民用大飛機(jī)15-5PH不銹鋼銑削工藝研究
[Abstract]:As a new type of stainless steel material, 15-5PH stainless steel has been widely used in aircraft driving device, fuselage main beam and landing gear for its excellent mechanical properties, high temperature resistance and corrosion resistance. Its excellent mechanical properties also indicate that the material is difficult to be machined. In the process of processing 15-5PH stainless steel, due to its low thermal conductivity and small elastic modulus, it is easy to appear such phenomena as high deformation resistance, high cutting temperature, fast tool wear and damage, and work hardening, etc. As a result, the processing quality and efficiency of 15-5PH stainless steel are low and the processing cost is too high. Therefore, it is of great significance to study the cutting performance of 15-5PH stainless steel, optimize its technological parameters and develop a special database with independent intellectual property rights to improve the processing efficiency, control the processing cost and process quality. In this paper, according to the functional requirements of the enterprise for cutting database system, we select three features of rough machining, arc surface and web to carry out basic experimental research, modeling of cutting results and optimization of cutting parameters. Then all the experimental data and experimental results are inputted into the cutting parameter database system and debugged and run. Aiming at the problems of serious tool wear and breakage and low tool life during rough machining of 15-5PH stainless steel, single factor experimental design method is used to carry out tool wear and tool life experiment. The wear and failure modes of cutting tools under different conditions were observed and analyzed, and the influence mechanism and law of cutting parameters on tool life were analyzed. The BP neural network algorithm is used to model the tool life and the prediction model of the tool life is established to realize the empirical prediction of the tool life. With the help of particle swarm optimization (PSO) algorithm and aiming at cutting efficiency, the milling parameters of rough machining are optimized. According to surface roughness, orthogonal design method is used to finish machining 15-5PH stainless steel round arc workpiece. The influence of milling parameters on the surface roughness of arc surface is studied and analyzed. At the same time, the empirical modeling and theoretical modeling of surface roughness are carried out by partial least square method and kinematics analysis method respectively. By comparing the theoretical prediction model with higher prediction precision, based on the theoretical prediction model, combining with particle swarm optimization algorithm and aiming at cutting efficiency, the milling parameters of arc finish machining are optimized. According to the characteristics of web, the orthogonal design method was used to carry out the experiments of web finishing, and the influence of cutting parameters on the surface roughness of web was studied. Secondly, an empirical prediction model of surface roughness is constructed by using BP neural network algorithm. Finally, based on particle swarm optimization (PSO) algorithm and combined with prediction model, the milling parameters of web finishing are optimized with cutting efficiency as the goal. Finally, the experimental parameters and results of all kinds of features, the prediction model, the optimization algorithm and the optimization results are inputted into the aeronautical cutting parameter database system, which provides theoretical, data and technical support for the core functions of the database system.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:V261.23
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 姚敬東;鄭侃;董松;肖行志;孟恒;張習(xí)芳;;15-5PH不銹鋼圓弧面銑削試驗(yàn)研究[J];工具技術(shù);2016年06期
2 吳玲;左健民;王保升;汪木蘭;;基于遺傳算法的銑削參數(shù)優(yōu)化[J];組合機(jī)床與自動(dòng)化加工技術(shù);2014年04期
3 何開(kāi)鋒;錢(qián)煒祺;張勇;王文正;;偏最小二乘法在氣動(dòng)數(shù)據(jù)建模中的應(yīng)用[J];宇航學(xué)報(bào);2014年03期
4 徐黎明;王清;陳劍平;潘玉珍;;基于BP神經(jīng)網(wǎng)絡(luò)的泥石流平均流速預(yù)測(cè)[J];吉林大學(xué)學(xué)報(bào)(地球科學(xué)版);2013年01期
5 周賢良;聶輪;華小珍;劉智勇;崔霞;彭新元;;15-5PH不銹鋼初期點(diǎn)蝕的電化學(xué)特性[J];中國(guó)腐蝕與防護(hù)學(xué)報(bào);2012年05期
6 裴海祥;王西濤;王立新;邢麗娜;;時(shí)效處理對(duì)15-5PH沉淀硬化馬氏體不銹鋼組織和力學(xué)性能的影響[J];特殊鋼;2012年05期
7 趙鵬飛;劉婷婷;汪惠芬;;孔加工切削參數(shù)優(yōu)化系統(tǒng)的研究與開(kāi)發(fā)[J];航空精密制造技術(shù);2012年01期
8 劉金棟;;數(shù)控銑削參數(shù)的回歸分析及優(yōu)化處理[J];裝備制造技術(shù);2011年06期
9 周輝;鄧奕;程棟梁;張楚鋒;;數(shù)控銑削參數(shù)模糊正交優(yōu)化及實(shí)驗(yàn)研究[J];機(jī)床與液壓;2011年03期
10 劉振寶;梁劍雄;楊志勇;古立新;張秀麗;孫常亮;;碳含量對(duì)15-5PH沉淀硬化不銹鋼板材的組織與性能的影響[J];航空材料學(xué)報(bào);2011年01期
相關(guān)博士學(xué)位論文 前1條
1 劉建華;粒子群算法的基本理論及其改進(jìn)研究[D];中南大學(xué);2009年
相關(guān)碩士學(xué)位論文 前3條
1 魏晉軍;粒子群優(yōu)化算法的改進(jìn)及應(yīng)用[D];太原理工大學(xué);2015年
2 田剛;鈦合金高速切削過(guò)程中的切削力和表面粗糙度建模及參數(shù)優(yōu)化[D];山東大學(xué);2010年
3 劉牧;數(shù)控加工表面粗糙度預(yù)測(cè)的關(guān)鍵技術(shù)研究[D];西北工業(yè)大學(xué);2006年
,本文編號(hào):2268474
本文鏈接:http://sikaile.net/falvlunwen/zhishichanquanfa/2268474.html