基于脈沖鼓泡和氣動(dòng)攪拌的煙氣脫硫工藝及裝置研究
本文選題:環(huán)柵 + 布?xì)庀到y(tǒng); 參考:《湖南大學(xué)》2016年博士論文
【摘要】:二氧化硫的人為排放主要來自于化石燃料的燃燒。我國(guó)以煤炭為主的能源消費(fèi)結(jié)構(gòu)短期內(nèi)不會(huì)發(fā)生改變,根據(jù)歷年中國(guó)環(huán)境狀況公報(bào)顯示,我國(guó)每年向大氣排放的二氧化硫超過2000多萬(wàn)噸,對(duì)環(huán)境和經(jīng)濟(jì)造成很大負(fù)擔(dān)。全球的煙氣脫硫技術(shù)85%以上為濕法脫硫技術(shù),其中美、日、德三國(guó)為90%以上。濕法脫硫技術(shù)的核心是吸收塔,第一代吸收塔主要有填料塔、湍球塔等,系統(tǒng)使用的工藝幾乎都是拋棄法,第二代吸收塔則是用空塔代替填料塔、湍球塔、篩板塔等,空塔不僅使吸收塔內(nèi)部結(jié)構(gòu)簡(jiǎn)潔、造價(jià)降低,而且減少了結(jié)垢,典型代表的塔型有噴淋塔和噴射鼓泡塔。其中噴淋塔起步較早,而噴射鼓泡塔則發(fā)展較快。噴射鼓泡塔以氣相為分散相、液相為連續(xù)相,將二氧化硫的吸收、亞硫酸鈣的氧化、結(jié)晶以及除塵等工藝過程集中到同一個(gè)反應(yīng)器中進(jìn)行,具有較高的脫硫效率和除塵效率,工藝運(yùn)行pH值范圍通常控制在3~5,低pH值環(huán)境使吸收塔具有較好的氧化速率。但噴射鼓泡塔系統(tǒng)較為復(fù)雜、吸收塔的壓力損失較大。第三代塔的發(fā)展方向是吸收塔大型模塊化,同時(shí)通過提高煙氣的流速來增加反應(yīng)場(chǎng)中的擾動(dòng),加劇湍流,延長(zhǎng)煙氣在吸收液中的停留時(shí)間,從而提高二氧化硫的吸收率。環(huán)柵式吸收塔操作原理與噴射鼓泡塔相同,也屬于噴射鼓泡吸收塔的一種。但采用單切向進(jìn)氣方式,運(yùn)行時(shí)氣流切向進(jìn)入環(huán)形氣體通道,帶動(dòng)吸收液徑向旋轉(zhuǎn),進(jìn)入柵孔內(nèi)的氣流呈脈沖式,氣流被徑向旋轉(zhuǎn)的吸收液切割成更小的氣泡,在柵孔處,氣泡呈現(xiàn)向上、向前、向徑向攪拌方向的三維上升狀況,吸收液產(chǎn)生脈沖式鼓泡,鼓泡層出現(xiàn)劇烈的擾動(dòng)狀態(tài),延長(zhǎng)了塔內(nèi)氣、液接觸時(shí)間。環(huán)柵式布?xì)饨Y(jié)構(gòu)結(jié)合單切向的進(jìn)氣方式產(chǎn)生脈沖式鼓泡效果,增加吸收塔內(nèi)的擾動(dòng),與第三代塔提高氣速用以增加擾動(dòng)目的一致。對(duì)環(huán)柵式吸收塔和日本的噴射管式吸收塔做實(shí)驗(yàn)比較,結(jié)果顯示,在進(jìn)氣量以及液位相同時(shí),環(huán)柵式吸收塔的壓力損失小于噴射管式吸收塔的壓力損失,而環(huán)柵式吸收塔的鼓泡層高度大于噴射管式吸收塔的鼓泡層高度,在進(jìn)氣量為2800m3/h時(shí),環(huán)柵式吸收塔的鼓泡層高度多次達(dá)到1000mm以上,且塔內(nèi)的氣液擾動(dòng)非常激烈,其最高峰值可達(dá)1500mm。噴射管式吸收塔的鼓泡層高度在700mm左右。當(dāng)用相同量的質(zhì)量濃度為1.37%CaCO3溶液為吸收液,處理氣量2300 m3/h,二氧化硫濃度為3000mg/m3,吸收液pH值大于5.2時(shí),環(huán)柵式吸收塔的脫硫效率高于噴射管式吸收塔的脫硫效率,環(huán)柵式吸收塔中的吸收液有效成分被迅速消耗,沒有新鮮漿液補(bǔ)充,當(dāng)pH值小于5.2后,環(huán)柵式吸收塔的脫硫效率低于噴射管式吸收塔的脫硫效率。當(dāng)吸收塔直徑較大時(shí),環(huán)柵式吸收塔存在塔中心部位布?xì)獠蛔愕娜毕?因而在環(huán)柵內(nèi)部增設(shè)噴射管,設(shè)計(jì)發(fā)明氣動(dòng)攪拌吸收塔,并在環(huán)形氣體通道中安裝浮筒攪拌器,用于加強(qiáng)吸收塔內(nèi)氣固液三相的混合效果。浮筒攪拌器沒有固定軸,浮于環(huán)形通道內(nèi)的吸收液液面上,其旋轉(zhuǎn)的動(dòng)能完全由環(huán)形通道內(nèi)的氣流提供,轉(zhuǎn)速越快,攪拌均勻所耗時(shí)間越短。進(jìn)氣量相同時(shí),氣動(dòng)攪拌吸收塔的系統(tǒng)壓力損失小于日式噴射管式吸收塔的壓力損失,當(dāng)進(jìn)氣量為2400 m3/h,二氧化硫濃度為3400mg/m3,脫硫劑為質(zhì)量濃度1.64%的CaCO3溶液,吸收液pH值為6.0時(shí),氣動(dòng)攪拌吸收塔的脫硫效率達(dá)到96%,噴射管式吸收塔的脫硫效率為80%左右,后期吸收液pH值降到4.0時(shí),氣動(dòng)攪拌吸收塔的脫硫效率仍然達(dá)到77%,噴射管式吸收塔的脫硫效率為53%左右。噴射鼓泡塔的低pH值運(yùn)行環(huán)境有利于對(duì)重金屬物質(zhì)的富集,結(jié)合這一特點(diǎn)發(fā)明雙循環(huán)垂直篩板吸收塔,用于處理高濃度含硫煙氣的脫硫,同時(shí)回收有經(jīng)濟(jì)價(jià)值的礦渣。雙循環(huán)吸收塔一級(jí)循環(huán)為環(huán)柵式布?xì)庋b置,吸收液采用弱堿性礦物漿液,以磷礦漿為例,磷礦漿液用于脫硫后,其中雜質(zhì)被去除使磷礦得以富集,脫硫后的礦渣可直接加濃硫酸制成普鈣(磷肥)就地銷售,二級(jí)循環(huán)為垂直篩板結(jié)構(gòu),采用堿性較強(qiáng)的吸收液來維持裝置的高脫硫效率,以Na2CO3溶液為例,當(dāng)進(jìn)氣量為2300m3/h,二氧化硫濃度為3400mg/m3,垂直篩板埋入220mm時(shí),吸收塔的總脫硫效率最高達(dá)95%,垂直篩板的埋入深度對(duì)吸收塔的脫硫效率有較大影響,其它條件不變,垂直篩板埋入深度80mm時(shí)的總脫硫效率最高值為78%。本文針對(duì)脫硫吸收塔的布?xì)庋b置、攪拌裝置的性能優(yōu)化以及吸收塔應(yīng)用方面進(jìn)行研究。在保證吸收塔高效脫硫的同時(shí),對(duì)吸收塔結(jié)構(gòu)進(jìn)行簡(jiǎn)化、降低吸收塔的壓力損失、提高吸收塔鼓泡效果等方面取得一定成果,同時(shí)在應(yīng)用雙循環(huán)吸收塔高效脫硫同時(shí)回收具有經(jīng)濟(jì)價(jià)值的礦物質(zhì)方面做了大量實(shí)驗(yàn),確定雙循環(huán)吸收塔的最佳操作范圍。為具有自主知識(shí)產(chǎn)權(quán)的吸收塔的大型工業(yè)化提供實(shí)踐基礎(chǔ)和理論依據(jù)。
[Abstract]:The man-made emissions of sulfur dioxide are mainly from the combustion of fossil fuels. China's coal based energy consumption structure will not change in the short term. According to the Chinese environmental bulletin, the annual emission of sulfur dioxide to the atmosphere is more than about 20000000 tons, causing a great burden on the environment and economy. More than 85% of the technology is wet desulphurization technology, including more than 90% in the United States, Japan and Germany. The core of the wet desulphurization technology is the absorption tower. The first generation absorption towers are mainly packed tower, turbulence tower and so on. The systems used are almost all abandoned methods. The second generation absorption towers use empty towers instead of packed towers, turbulence towers, sieve plates and so on. The air towers not only make absorption of the tower, but the air towers not only make absorption. The inner structure of the tower is concise, the cost is reduced, and the scale is reduced. The typical tower type is the spray tower and the jet Drum Tower. The spray tower starts early, and the jet drum tower develops faster. The jet drum tower takes the gas phase as the dispersed phase, the liquid phase is continuous phase, the absorption of sulfur dioxide, the oxidation of calcium sulfite, the crystallization and the dust removal. The process is concentrated in the same reactor with high desulfurization efficiency and dedusting efficiency. The range of pH value of the process is usually controlled at 3~5. The low pH environment makes the absorption tower have a better oxidation rate. But the injection drum tower system is more complex and the pressure loss of the absorption tower is lost. The direction of the third generation tower is the absorption tower. By increasing the flow velocity of the flue gas to increase the disturbance in the reaction field, increase the turbulence, prolong the retention time in the absorption liquid and increase the absorption rate of the sulfur dioxide. The operation principle of the ring type absorption tower is the same as the jet Drum Tower, but it is one of the jet bubble absorption towers. When the air flow is cut into the annular gas channel, the absorption liquid is rotated in the radial direction, and the air flow into the gate hole is pulsed. The air flow is cut into smaller bubbles by the absorption liquid which is rotated in the radial direction. At the gate hole, the bubbles appear upward, forward, to the radial direction, and the absorption liquid produces pulse bubbling, and the bubble layer appears play. The strong disturbing state prolongs the gas and liquid contact time in the tower. The ring gate type air distribution structure combines with the single tangent inlet mode to produce the pulse bubbling effect, increases the disturbance in the absorption tower, and is in agreement with the third generation tower to increase the gas velocity to increase the disturbance. When the intake and liquid level are the same, the pressure loss of the ring type absorption tower is less than the pressure loss of the ejector type absorption tower, and the bubble layer height of the ring type absorption tower is larger than the bubble layer height of the ejector type absorption tower. When the intake volume is 2800m3/h, the bubble layer height of the ring type absorption tower is more than 1000mm, and in the tower. The maximum peak of the gas and liquid disturbance can reach the height of the bubble layer of the 1500mm. jet tube absorption tower at about 700mm. The desulfurization efficiency of the ring type absorption tower is higher than the ejector tube when the same quantity of mass concentration is 1.37%CaCO3 solution as the absorption liquid, the concentration of gas is 2300 m3/h, the concentration of sulfur dioxide is 3000mg/m3, and the pH value of the absorption liquid is greater than 5.2. The effective components of the absorption liquid in the ring type absorption tower are quickly consumed and no fresh slurry is added. When the pH value is less than 5.2, the desulfurization efficiency of the ring type absorption tower is lower than that of the ejector type absorption tower. When the diameter of the absorber is larger, the ring type absorption tower has the defects of the central gas distribution in the central part of the tower. Therefore, the ejector tube is added inside the ring gate, and the pneumatic stirring absorber is designed and invented, and the buoy agitator is installed in the annular gas channel to strengthen the mixing effect of the gas solid liquid three phase in the absorption tower. The buoy agitator has no fixed axis and is floating on the absorption liquid surface in the annular channel, and its rotational kinetic energy is completely from the gas in the annular channel. At the same time, the pressure loss of the pneumatic stirring absorber tower is less than that of the Japanese jet tube absorption tower, when the intake volume is 2400 m3/h, the sulfur dioxide concentration is 3400mg/m3, the desulfurizer is the CaCO3 solution with the mass concentration of 1.64%, and the pH value of the absorption liquid is 6. The desulphurization efficiency of the mixed absorption tower is 96%, the desulfurization efficiency of the jet tube absorption tower is about 80%. When the pH value of the later absorption liquid is reduced to 4, the desulfurization efficiency of the pneumatic stirring absorber tower is still 77%, and the desulfurization efficiency of the ejector type absorption tower is about 53%. The low pH operating environment of the jet bubble column is beneficial to the enrichment of heavy metals. The double circulating vertical sieve plate absorption tower was invented to deal with the desulfurization of high concentration sulfur containing flue gas and recovery of economic value. The first cycle of the double cycle absorption tower is a ring type gas distribution device. The absorption liquid is weak alkaline mineral slurry, and phosphate slurry is used as an example. After the phosphate slurry is used for desulphurization, the impurities are removed to phosphorus. The ore can be enriched, and the slag after the desulphurization can be directly added with concentrated sulfuric acid to sell the calcium phosphate (phosphate fertilizer) in place. The two stage cycle is the vertical sieve plate structure. The high desulfurization efficiency is maintained by the strong alkaline absorption liquid. The Na2CO3 solution is taken as an example, when the intake volume is 2300m3/h, the concentration of the oxygen sulfur is 3400mg/m3, the vertical sieve plate is embedded in 220mm, and the absorption tower is used. The total desulfurization efficiency is up to 95%. The buried depth of vertical sieve plate has a great influence on the desulfurization efficiency of the absorber, and the other conditions are unchanged. The total desulfurization efficiency of the vertical sieve plate when the depth of 80mm is buried is 78%.. This paper studies the air distribution device of the desulphurization absorber, the optimization of the agitator and the application of the absorption tower. At the same time, the structure of the absorption tower is simplified, the pressure loss of the absorber is reduced and the effect of the absorption tower is improved. At the same time, a lot of experiments have been made in the application of the double circulation absorption tower for high efficiency desulfurization and the recovery of the mineral resources with economic value, and the optimum of the double circulation absorption tower is determined. The scope of operation provides practical basis and theoretical basis for large-scale industrialization of absorption towers with independent intellectual property rights.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:X701.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蘇新軍;;鼓泡塔出口邊界條件的數(shù)值模擬[J];化學(xué)工程;2008年12期
2 樊亞超;靳海波;秦嶺;楊索和;何廣湘;;多級(jí)鼓泡塔內(nèi)液體速度分布的實(shí)驗(yàn)研究[J];化學(xué)工程;2011年10期
3 徐禮嘉;陳彩霞;夏梓洪;袁伯若;;鼓泡塔內(nèi)氣泡羽流周期性擺動(dòng)的數(shù)值模擬[J];化學(xué)工程;2012年09期
4 李佐虎,楊守志,毛卓雄,陳家鏞;多層鼓泡塔中液體軸向混合的研究[J];化工學(xué)報(bào);1980年03期
5 莫之光;;鼓泡塔反應(yīng)器的多級(jí)回流模型[J];華南工學(xué)院學(xué)報(bào);1981年02期
6 莫之光;鼓泡塔反應(yīng)器的多級(jí)回流模型[J];化工學(xué)報(bào);1983年02期
7 高橋照男 ,宮原敏郎 ,薛冠申;鼓泡塔的設(shè)計(jì)技術(shù)現(xiàn)狀及其要點(diǎn)[J];化學(xué)工程;1987年06期
8 劉銅安;崔柯;;液噴式鼓泡塔性能研究[J];吉林化工學(xué)院學(xué)報(bào);1989年02期
9 繆麗娟;鼓泡塔反應(yīng)裝置應(yīng)用的最新動(dòng)態(tài)[J];醫(yī)藥工程設(shè)計(jì);1995年04期
10 劉輝,張政;鼓泡塔中浮力驅(qū)動(dòng)環(huán)流特征及反應(yīng)器放大[J];化工學(xué)報(bào);1999年03期
相關(guān)會(huì)議論文 前1條
1 李昕;許春建;周明;;鼓泡塔內(nèi)吸附劑微粒增強(qiáng)氣液兩相傳質(zhì)的實(shí)驗(yàn)研究[A];第三屆全國(guó)化學(xué)工程與生物化工年會(huì)論文摘要集(上)[C];2006年
相關(guān)重要報(bào)紙文章 前1條
1 本報(bào)記者 姚伊樂;邯鋼為何選用鼓泡法脫硫?[N];中國(guó)環(huán)境報(bào);2010年
相關(guān)博士學(xué)位論文 前7條
1 吳婷;基于脈沖鼓泡和氣動(dòng)攪拌的煙氣脫硫工藝及裝置研究[D];湖南大學(xué);2016年
2 黃子賓;鼓泡塔內(nèi)液相多尺度循環(huán)流動(dòng)結(jié)構(gòu)的研究[D];華東理工大學(xué);2011年
3 李光;鼓泡塔反應(yīng)器氣液兩相流數(shù)值模擬模型及應(yīng)用[D];華東理工大學(xué);2010年
4 王樹立;鼓泡塔氣液兩相流的數(shù)值模擬與實(shí)驗(yàn)研究[D];大連理工大學(xué);2002年
5 姚柏平;氣液鼓泡塔流體力學(xué)理論與實(shí)驗(yàn)研究[D];北京化工大學(xué);1990年
6 明平文;鼓泡塔結(jié)晶器傳遞及操作原理研究[D];大連理工大學(xué);1999年
7 張煜;湍動(dòng)鼓泡塔充分發(fā)展段的流體力學(xué)與內(nèi)構(gòu)件技術(shù)研究[D];浙江大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 周強(qiáng);豎直列管鼓泡塔氣液兩相流數(shù)值模擬[D];華東理工大學(xué);2016年
2 袁伯若;鼓泡塔氣液兩相流數(shù)值模擬[D];華東理工大學(xué);2013年
3 王麗雅;鼓泡塔中流動(dòng)與傳遞參數(shù)的檢測(cè)[D];浙江大學(xué);2006年
4 周青鈉;漿態(tài)鼓泡塔流體力學(xué)實(shí)驗(yàn)研究[D];浙江大學(xué);2008年
5 秦嶺;多級(jí)鼓泡塔流體力學(xué)參數(shù)的測(cè)量與混合特性的研究[D];北京化工大學(xué);2010年
6 翟甜;影響鼓泡塔氣—液兩相流流體力學(xué)行為因素的研究[D];西北大學(xué);2014年
7 張曉東;鼓泡塔與內(nèi)循環(huán)氣升式反應(yīng)器內(nèi)氣—液兩相流的數(shù)值模擬[D];北京化工大學(xué);2006年
8 郝朋越;微位移法在鼓泡塔內(nèi)氣含率測(cè)量及流型判別中的應(yīng)用研究[D];天津大學(xué);2007年
9 周超;超聲作用下鼓泡塔內(nèi)氣泡與傳質(zhì)特性研究[D];華南理工大學(xué);2011年
10 方科學(xué);鼓泡結(jié)晶管內(nèi)氣—液兩相流計(jì)算流體力學(xué)數(shù)值模擬[D];天津大學(xué);2010年
,本文編號(hào):2044249
本文鏈接:http://sikaile.net/falvlunwen/zhishichanquanfa/2044249.html