電液流量、方向連續(xù)控制新原理及其應(yīng)用研究
本文選題:比例方向閥 + 流量反饋; 參考:《太原理工大學(xué)》2013年博士論文
【摘要】:電液控制技術(shù)在航空、航天,海洋工程、冶金,礦山、重型機(jī)械等體現(xiàn)一個(gè)國家綜合國力和國防現(xiàn)代化的許多工業(yè)領(lǐng)域,起著非常關(guān)鍵的作用。這一技術(shù)的核心是控制執(zhí)行器工作速度、方向、位置和輸出力的流量、方向連續(xù)控制元件,目前主要有比例方向閥和伺服比例閥。這一領(lǐng)域,我國雖然在系統(tǒng)集成技術(shù)方面已取得了許多成就,但在核心元件技術(shù)方面同國外發(fā)達(dá)國家仍有較大差距,制約了我國裝備制造業(yè)的發(fā)展,許多國家需求的重大裝備,如全斷面掘進(jìn)機(jī)、板坯連鑄連扎設(shè)備、大型成型設(shè)備等,所用電液控制元件,特別是高性能比例方向閥、伺服比例閥只能高價(jià)從國外進(jìn)口,造成國外在技術(shù)和價(jià)格上對(duì)我國的壟斷。國家也充分認(rèn)識(shí)到這一問題的嚴(yán)重性,2009年5月國務(wù)院出臺(tái)的裝備制造業(yè)調(diào)整和振興規(guī)劃,在原有振興裝備制造業(yè)16個(gè)優(yōu)先發(fā)展重大專項(xiàng)基礎(chǔ)上,補(bǔ)充了基礎(chǔ)部件,這其中就包含電液伺服和比例元件。在我國制定的國家中長期科學(xué)和技術(shù)發(fā)展規(guī)劃綱要(2006—2020年),優(yōu)先主題第26項(xiàng)之基礎(chǔ)件和通用部件:“重點(diǎn)研究開發(fā)重大裝備所需的關(guān)鍵基礎(chǔ)件和通用部件的設(shè)計(jì)、制造和批量生產(chǎn)的關(guān)鍵技術(shù)”,更是將電液控制技術(shù)所需的核心元器件列為重點(diǎn)研發(fā)內(nèi)容。正是在這樣的背景下,在國家自然科學(xué)基金“有源、流量閉環(huán)先導(dǎo)級(jí)為驅(qū)動(dòng)的電液流量控制理論與方法、51175362”和國家2011年重大科技成果轉(zhuǎn)化項(xiàng)目“高響應(yīng)、大流量伺服比例閥關(guān)鍵技術(shù)、系列產(chǎn)品開發(fā)及應(yīng)用”的資助下,提出本課題的研究內(nèi)容,通過對(duì)新的電液流量控制方法相關(guān)基礎(chǔ)問題的研究,為我國自主研發(fā)高精度、高動(dòng)態(tài)響應(yīng)、模塊化、易集成的比例流量控制元件提供理論和試驗(yàn)依據(jù)。 首先,對(duì)國內(nèi)外的相關(guān)研究工作作了較為詳細(xì)的分析和論證,找出了現(xiàn)有技術(shù)存在的不足,提出解決問題的創(chuàng)新思想,研究工作對(duì)發(fā)展具有我國自主知識(shí)產(chǎn)權(quán)的低能耗電液流量控制元件,突破國外在這一領(lǐng)域?qū)ξ覈夹g(shù)和經(jīng)濟(jì)上的壟斷及制約,帶動(dòng)我國液壓工業(yè)發(fā)展,推動(dòng)相關(guān)主機(jī)行業(yè)的技術(shù)進(jìn)步具有重要的理論和現(xiàn)實(shí)意義。 對(duì)影響電液伺服比例閥特性的關(guān)鍵技術(shù)和基礎(chǔ)理論開展了研究,采用流體動(dòng)力學(xué)仿真方法CFD,對(duì)影響閥特性的動(dòng)靜態(tài)液動(dòng)力及其補(bǔ)償方法作了研究,給出了新的減小液壓動(dòng)力影響的補(bǔ)償方法;對(duì)制約閥動(dòng)態(tài)響應(yīng)快速性的電機(jī)械轉(zhuǎn)換器及其控制方法作了研究,提出采用動(dòng)圈式電機(jī)械轉(zhuǎn)換器做驅(qū)動(dòng)的改進(jìn)思路。 提出創(chuàng)新的比例方向閥控制方案,對(duì)新型比例方向閥的工作機(jī)理進(jìn)行闡述,對(duì)關(guān)鍵的結(jié)構(gòu)參數(shù)進(jìn)行設(shè)計(jì)、計(jì)算,應(yīng)用AutoCAD軟件和Pro/E軟件詳細(xì)建立了閥的二維工程圖和三維實(shí)體模型,驗(yàn)證了結(jié)構(gòu)參數(shù)的合理性,為后續(xù)仿真優(yōu)化設(shè)計(jì)、工作特性分析以及生產(chǎn)物理樣機(jī)奠定了基礎(chǔ)。 根據(jù)新型比例方向閥的結(jié)構(gòu)及工作原理,建立閥的完整數(shù)學(xué)模型。根據(jù)線性化理論,對(duì)閥的動(dòng)靜態(tài)特性進(jìn)行理論計(jì)算和分析,對(duì)影響穩(wěn)態(tài)控制特性及零位閥系數(shù)的主要幾何參數(shù)展開討論;根據(jù)合理假設(shè),進(jìn)一步將閥的非線性狀態(tài)空間模型簡化,推導(dǎo)出系統(tǒng)方框圖和傳遞函數(shù),并對(duì)系統(tǒng)穩(wěn)定性進(jìn)行分析,得出了新型比例方向閥的系統(tǒng)穩(wěn)定性條件。研究結(jié)果表明,閥的動(dòng)態(tài)特性為一階滯后環(huán)節(jié),其轉(zhuǎn)折頻率隨節(jié)流槽面積梯度的增大而增大,隨閥芯面積比的增大而減小。為保證閥的穩(wěn)定性,節(jié)流槽應(yīng)留有一定的預(yù)開口量。 將閥的CAD實(shí)體導(dǎo)入SimulationX仿真平臺(tái),創(chuàng)建出新型比例方向閥的多學(xué)科仿真模型,分別在時(shí)域和頻域中對(duì)閥的穩(wěn)態(tài)特性和動(dòng)態(tài)特性進(jìn)行仿真研究,討論了將先導(dǎo)閥回油直接引油箱以及節(jié)流槽面積梯度的改變對(duì)閥的動(dòng)態(tài)性能影響。研究結(jié)果表明,新型比例方向閥的穩(wěn)態(tài)特性和等位移特性良好,主閥芯位移控制曲線的線性度也較好,但有一定的中位控制死區(qū)。閥的動(dòng)態(tài)階躍響應(yīng)時(shí)間較長,閥芯位移的響應(yīng)速度與系統(tǒng)壓力和給定信號(hào)有關(guān)。閥的工作頻寬約7Hz,頻響曲線沒有出現(xiàn)諧振峰值,具有典型一階滯后環(huán)節(jié)的特征,仿真結(jié)果驗(yàn)證了理論分析的正確性。 為進(jìn)一步提高閥的控制精度和動(dòng)態(tài)性能,提出采用主閥芯位移-電閉環(huán)、先導(dǎo)閥芯位移-電閉環(huán)和雙電閉環(huán)三種控制方案,分析了三種閥的結(jié)構(gòu)特點(diǎn)及工作機(jī)理,分別對(duì)其進(jìn)行多領(lǐng)域建模和仿真研究。結(jié)果表明,主閥芯位移-電閉環(huán)控制閥能夠明顯抑制液動(dòng)力、摩擦力等干擾,提高了閥的穩(wěn)態(tài)控制精度和動(dòng)態(tài)響應(yīng)速度,將閥的頻帶拓寬到18Hz,閥的綜合性能獲得大幅度提升;采用先導(dǎo)閥芯位移-電閉環(huán)控制,由于系統(tǒng)閉環(huán)包括的范圍太小,無法消除功率級(jí)干擾,因此對(duì)閥的性能影響不大;加入雙電閉環(huán)控制則可以結(jié)合前兩種電閉環(huán)控制的優(yōu)勢(shì),合理調(diào)節(jié)控制器參數(shù),就可使閥獲得最佳的工作特性。引入電閉環(huán)控制方案,不僅改善了閥的動(dòng)靜態(tài)性能,也使閥具有了在閉環(huán)控制通道發(fā)生故障的情況下,仍可開環(huán)工作的容錯(cuò)控制功能。
[Abstract]:Electro-hydraulic control technology plays a very important role in many industrial fields, such as aeronautics, spaceflight, marine engineering, metallurgy, mine, heavy machinery and so on, which embodies a national comprehensive national strength and the modernization of national defense. The core of this technology is to control the speed, direction, flow of position and output force of the actuator and the direction of continuous control components. There are proportional directional valves and servo proportional valves. In this field, although many achievements have been made in system integration technology in China, there is still a big gap between the technology of core components and the developed countries in foreign countries, which restricts the development of our equipment manufacturing industry and the major equipment for many countries, such as full section tunnelling machine, slab continuous casting and continuous ligation. Equipment, large molding equipment, electro-hydraulic control elements, especially high performance proportional directional valves, and servo proportional valves can only be imported from abroad, resulting in foreign monopoly on technology and price. The state is fully aware of the seriousness of this problem. In May 2009, the State Council issued the adjustment and revitalization of the equipment manufacturing industry. The basic components are supplemented on the basis of 16 major development priorities for the revitalization of the equipment manufacturing industry. This includes electro hydraulic servo and proportional components. The national medium and long term science and technology development program (2006 - 2020), the basic components and general components of the twenty-sixth priority themes in China, are made in China: "key research and development are important." The key technologies for the design, manufacture and mass production of the key basic components and general components required for equipment are listed as the key components of the electrohydraulic control technology. It is in this context that the theory and side of the "active, flow closed lead level" driven by the National Natural Science Foundation of the national Natural Science Fund (National Natural Science Foundation) Law, 51175362 "and the national 2011 major scientific and technological achievements transformation project" high response, the key technology of the large flow servo proportional valve, the development and application of a series of products ", put forward the research content of this topic, through the research on the basic problems related to the new method of electrohydraulic flow control, high precision and high dynamic response for our country's independent research and development. Modular and easily integrated proportional flow control components provide theoretical and experimental basis.
First, we make a more detailed analysis and demonstration of the relevant research work at home and abroad, find out the shortcomings of the existing technology, put forward the innovative ideas to solve the problems, and develop the low energy consumption control elements with our own intellectual property right in the research work, and break through the monopoly of China's technology and economy in this field. It is of great theoretical and practical significance to promote the development of China's hydraulic industry and promote the technological progress of the relevant host industry.
The key technology and basic theory affecting the characteristics of electro-hydraulic servo proportional valve are studied. The hydrodynamic simulation method CFD is used to study the dynamic and static hydrodynamic force of the valve and its compensation method. A new compensation method for reducing the influence of hydraulic power is given, and the electrical and mechanical conversion of the dynamic response of the valve is made. The device and its control method are studied, and the improvement idea of using moving coil electromechanical converter to drive is proposed.
A new proportional directional valve control scheme is proposed. The working mechanism of the new proportional directional valve is expounded. The key structural parameters are designed and calculated. The two dimensional engineering drawing and three-dimensional solid model of the valve are established in detail by using AutoCAD software and Pro/E software. The rationality of the structural parameters is verified, and the work is optimized for the follow-up simulation. Characteristics analysis and production of physical prototype laid the foundation.
Based on the structure and working principle of the new proportional directional valve, a complete mathematical model of the valve is established. Based on the linearization theory, the dynamic and static characteristics of the valve are theoretically calculated and analyzed. The main geometric parameters affecting the steady state control and the zero valve coefficient are discussed, and the nonlinear state space model of the valve is further studied. The system's block diagram and transfer function are derived, and the stability of the system is analyzed. The stability conditions of the new proportional directional valve are obtained. The results show that the dynamic characteristics of the valve are first order lag link, and the turning frequency increases with the increase of the area gradient of the slot area, and decreases with the increase of the area ratio of the valve core. The stability of the valve should be kept at a certain amount of pre opening.
The CAD entity of the valve is introduced into the SimulationX simulation platform, and a multi-disciplinary simulation model of the new proportional directional valve is created. The steady-state and dynamic characteristics of the valve are simulated in the time domain and frequency domain respectively. The influence of the change of the change of the pilot valve back oil direct fuel tank and the area gradient of the throttle area to the dynamic performance of the valve is discussed. The results show that the steady state and equal displacement characteristics of the new proportional directional valve are good, and the linearity of the main valve core displacement control curve is also good, but there is a certain middle position control dead zone. The dynamic step response time of the valve is longer, the response speed of the valve core displacement is related to the system pressure and the given signal. The frequency width of the valve is about 7Hz and the frequency response curve is not The resonance peak has the characteristics of typical first order delay. The simulation results verify the correctness of the theoretical analysis.
In order to further improve the control precision and dynamic performance of the valve, three control schemes are proposed, which are the main valve core displacement electric closed loop, the pilot valve core displacement electric closed loop and the double closed loop control scheme. The structure characteristics and working mechanism of the three valves are analyzed and the multi domain modeling and simulation research are carried out respectively. The results show that the main valve core displacement electric closed loop control valve is carried out. It can obviously restrain the interference of fluid power and friction, improve the steady state control precision and dynamic response speed of the valve, widen the valve's frequency band to 18Hz, and improve the comprehensive performance of the valve greatly; with the pilot valve core displacement electric closed loop control, the power level interference can not be eliminated because the closed loop of the system is too small to eliminate the power level interference. Therefore, the valve can not be eliminated. The performance of the double closed loop control can be combined with the advantages of the first two kinds of closed loop control, and the optimal control parameters can be adjusted to make the valve get the best performance. The electric closed loop control scheme is introduced, which not only improves the dynamic and static performance of the valve, but also makes the valve with the failure of the closed loop control channel. The fault-tolerant control function of open loop work.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2013
【分類號(hào)】:TP271.31
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 馮天麟;唐曉群;田松;;液壓機(jī)用流量反饋型電液比例流量閥的研制[J];鍛壓技術(shù);2008年03期
2 馮天麟,唐曉群;先導(dǎo)式流量反饋電液比例流量閥[J];閥門;2005年03期
3 田波,陰正錫;極薄煤層采煤機(jī)液壓鎖的研制及實(shí)驗(yàn)分析[J];重慶大學(xué)學(xué)報(bào)(自然科學(xué)版);1990年06期
4 權(quán)龍,林廷圻,史維祥;電液比例控制系統(tǒng)負(fù)載敏感新方法[J];工程機(jī)械;1993年05期
5 王林翔,章明川,方志宏;閥內(nèi)流道布置對(duì)液動(dòng)力的影響[J];機(jī)床與液壓;2000年06期
6 鄧習(xí)樹,李自光;當(dāng)前液壓系統(tǒng)仿真技術(shù)發(fā)展現(xiàn)狀及趨勢(shì)[J];機(jī)床與液壓;2003年01期
7 劉國昌;趙紅波;曾慶良;韓虎;;基于HOPSAN的液壓系統(tǒng)仿真與應(yīng)用[J];機(jī)床與液壓;2006年11期
8 孫成通;陳國華;蔣學(xué)華;韓虎;;液壓系統(tǒng)仿真技術(shù)與仿真軟件研究[J];機(jī)床與液壓;2008年10期
9 武鵬飛;顏凌云;包宗賢;;淺析液壓系統(tǒng)仿真技術(shù)現(xiàn)狀及發(fā)展趨勢(shì)[J];機(jī)床與液壓;2011年08期
10 王慶豐,,吳根茂,路甬祥;節(jié)流控制的壓力補(bǔ)償特性優(yōu)化和測(cè)壓點(diǎn)補(bǔ)償研究[J];機(jī)床與液壓;1994年04期
相關(guān)博士學(xué)位論文 前2條
1 李如平;射流管式水壓電液伺服閥研制及特性研究[D];華中科技大學(xué);2011年
2 許小慶;新型電液伺服比例閥用電—機(jī)械轉(zhuǎn)換器的理論分析和試驗(yàn)研究[D];太原理工大學(xué);2010年
本文編號(hào):2009076
本文鏈接:http://sikaile.net/falvlunwen/zhishichanquanfa/2009076.html