基于模糊自整定PID算法的精鍛機(jī)夾頭控制研究
本文選題:精鍛機(jī)夾頭 + 電液位置伺服系統(tǒng) ; 參考:《太原科技大學(xué)》2013年碩士論文
【摘要】:精鍛機(jī)的研制有著重要的科研價(jià)值與經(jīng)濟(jì)意義,作為GFM的專有技術(shù),臥式精鍛機(jī)的價(jià)格不菲,但作為目前軸類鍛造的最優(yōu)方案,國(guó)內(nèi)很多鍛壓廠對(duì)精鍛機(jī)的需求量很大。雖要完整研發(fā)一臺(tái)具有自主知識(shí)產(chǎn)權(quán)的精鍛機(jī),我們還有很長(zhǎng)的路要走,但退一步講,對(duì)精鍛機(jī)的研究可以使我們更好地利用現(xiàn)有的進(jìn)口設(shè)備,節(jié)省一大筆維修費(fèi)用。 夾頭作為精鍛機(jī)主要的輔助設(shè)備之一,它主要是在鍛打過(guò)程中,完成對(duì)坯料夾持、旋轉(zhuǎn)、隨動(dòng)軸向進(jìn)給等動(dòng)作。本文研究的內(nèi)容是夾頭的旋轉(zhuǎn)動(dòng)作。從原理上分析,夾頭的旋轉(zhuǎn)機(jī)構(gòu)實(shí)質(zhì)上是一種電液伺服位置控制系統(tǒng),電液伺服控制系統(tǒng)作為液壓學(xué)科的重要分支,近年來(lái)在軍事、航天、鍛壓等領(lǐng)域越來(lái)越受到重視。 電液位置伺服系統(tǒng)是一種典型的非線性系統(tǒng),在實(shí)際運(yùn)用中,由于環(huán)境的因素,系統(tǒng)參數(shù)會(huì)發(fā)生改變進(jìn)而影響控制品質(zhì)。所以如何使控制算法更加智能,跟隨外界環(huán)境的變換來(lái)改變控制策略,從而作出應(yīng)對(duì),這是我們研究的重點(diǎn)課題。傳統(tǒng)的PID控制器實(shí)現(xiàn)起來(lái)比較容易,但對(duì)于非線性的控制對(duì)象,其往往不能同時(shí)滿足精度與速度兩方面的控制要求。模糊控制的興起使我們對(duì)復(fù)雜的非線性系統(tǒng)有了新的解決方案,它屬于智能控制的分支,通過(guò)借助在一線操作人員的實(shí)際經(jīng)驗(yàn)來(lái)建立專家控制規(guī)則,以應(yīng)對(duì)外部環(huán)境變換引起的系統(tǒng)特性整定問(wèn)題。但模糊算法的控制精度不高,這在很大程度上制約了它的發(fā)展。本文采用了模糊自整定PID控制算法,集合了兩者優(yōu)點(diǎn),可以達(dá)到較好的控制效果。 AMESim是優(yōu)秀的液壓建模軟件,可以較好地完成液壓系統(tǒng)的建模,同時(shí)它具有同Simulink的接口,可以使我們利用后者強(qiáng)大的運(yùn)算能力來(lái)對(duì)液壓系統(tǒng)進(jìn)行仿真,效果比單純利用Simulink來(lái)仿真更精確。究其原因主要是在Simulink中我們要根據(jù)控制對(duì)象進(jìn)行各種簡(jiǎn)化近似處理,從而得到傳遞函數(shù)作為仿真系統(tǒng)的控制對(duì)象,這無(wú)形中加大了系統(tǒng)仿真的誤差;而AMESim則是直接在相應(yīng)的液壓模型中輸入相關(guān)參數(shù)來(lái)生成控制對(duì)象,對(duì)液壓系統(tǒng)的描述更加準(zhǔn)確、完整,所以結(jié)果更具說(shuō)服力。 仿真結(jié)果表明,,運(yùn)用模糊自整定PID控制器時(shí),精鍛機(jī)夾頭的旋轉(zhuǎn)系統(tǒng)控制效果良好,可以滿足夾頭在高頻旋轉(zhuǎn)時(shí)的技術(shù)要求。
[Abstract]:The development of precision forging machine has important scientific research value and economic significance. As a proprietary technology of GFM, horizontal precision forging machine is expensive. However, as the best scheme of shaft forging at present, many domestic forging plants have a great demand for precision forging machine. Although we still have a long way to go to develop a precision forging machine with independent intellectual property rights, the research on precision forging machine can make better use of existing imported equipment and save a lot of maintenance costs. As one of the main auxiliary equipments of precision forging machine, the chuck is mainly used to clamp, rotate and follow the axial feed during forging. The content of this paper is the rotating action of the chuck. In principle, the rotating mechanism of the chuck is essentially an electro-hydraulic servo position control system. As an important branch of hydraulic science, electro-hydraulic servo control system has been paid more and more attention in military, aerospace, forging and other fields in recent years. Electro-hydraulic position servo system is a kind of typical nonlinear system. In practical application, the system parameters will change because of the environmental factors, and then affect the control quality. Therefore, how to make the control algorithm more intelligent, follow the transformation of the external environment to change the control strategy, so as to make a response, this is the focus of our research. The traditional PID controller is easy to implement, but for the nonlinear control object, it can not meet the control requirements of both precision and speed at the same time. The rise of fuzzy control gives us a new solution to complex nonlinear systems. It belongs to the branch of intelligent control. In order to deal with the external environment change caused by the system characteristics tuning problem. However, the control accuracy of fuzzy algorithm is not high, which restricts its development to a great extent. In this paper, fuzzy self-tuning PID control algorithm is adopted, which combines the advantages of both, and can achieve better control effect. AMESim is an excellent software for hydraulic modeling, which can model hydraulic system well. At the same time, it has the interface with Simulink, which enables us to make use of the powerful computing ability of the latter to simulate the hydraulic system. The effect is more accurate than using Simulink alone. The main reason is that in Simulink we have to do a variety of simplified approximate processing according to the control object, so as to get the transfer function as the control object of the simulation system, which increases the error of the system simulation. The AMESim directly inputted the relevant parameters in the corresponding hydraulic model to generate the control object, the description of the hydraulic system is more accurate and complete, so the results are more persuasive. The simulation results show that the rotating system of the chuck of the precision forging machine has a good control effect when the fuzzy self-tuning PID controller is used, and it can meet the technical requirements of the chuck in the high frequency rotation.
【學(xué)位授予單位】:太原科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TP273;TG315
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 解卓明;四錘頭精鍛機(jī)國(guó)產(chǎn)化的初探[J];鍛壓機(jī)械;1995年05期
2 周鮮成;模糊控制技術(shù)在變頻空調(diào)器中的應(yīng)用[J];電子技術(shù)應(yīng)用;2001年02期
3 趙文學(xué);;鐵道車輛車軸鍛造及熱處理技術(shù)[J];工程建設(shè)與設(shè)計(jì);2006年05期
4 閆興國(guó),毛大彬;100MW汽輪機(jī)低壓透平油純電調(diào)改造[J];甘肅科技;2004年11期
5 袁鳳蓮;;Fuzzy自整定PID控制器設(shè)計(jì)及其MATLAB仿真[J];沈陽(yáng)航空工業(yè)學(xué)院學(xué)報(bào);2006年01期
6 史云強(qiáng);;模糊PID控制在伺服系統(tǒng)中的應(yīng)用[J];艦船電子對(duì)抗;2007年02期
7 冀春榮,何鉞,李燕;模糊規(guī)則細(xì)化的神經(jīng)網(wǎng)絡(luò)方法[J];機(jī)床與液壓;1998年04期
8 屈毅;寧鐸;賴展翅;程琪;穆麗寧;;基于模糊PID控制的溫室控制系統(tǒng)[J];計(jì)算機(jī)應(yīng)用;2009年07期
9 于宗振;;基于AMEsim/Simulink的電液伺服比例控制的同步回路建模與仿真研究[J];機(jī)械研究與應(yīng)用;2012年03期
10 潘學(xué)軍;張兆惠;;基于模糊PID的智能汽車控制系統(tǒng)[J];控制工程;2009年05期
相關(guān)會(huì)議論文 前2條
1 鮮麟波;楊鋼;傅曉云;李寶仁;;基于AMEsim/Simulink的電液位置/力混合控制仿真研究[A];第四屆全國(guó)流體傳動(dòng)與控制學(xué)術(shù)會(huì)議論文集[C];2006年
2 劉佳東;彭天好;朱劉英;胡佑蘭;;基于AMESim與Simulink聯(lián)合仿真的泵控馬達(dá)復(fù)合調(diào)速系統(tǒng)控制[A];中國(guó)機(jī)械工程學(xué)會(huì)流體傳動(dòng)與控制分會(huì)第六屆全國(guó)流體傳動(dòng)與控制學(xué)術(shù)會(huì)議論文集[C];2010年
相關(guān)碩士學(xué)位論文 前10條
1 羅文軍;基于參數(shù)自整定的模糊PID控制在水箱控制系統(tǒng)中的應(yīng)用[D];中南大學(xué);2011年
2 笪靖;工業(yè)閥門電液位置伺服驅(qū)動(dòng)系統(tǒng)的研究及應(yīng)用[D];浙江大學(xué);2012年
3 李輝;蛋粉噴霧干燥智能控制器設(shè)計(jì)及系統(tǒng)仿真[D];天津大學(xué);2004年
4 丁宇飛;VOD爐計(jì)算機(jī)控制系統(tǒng)設(shè)計(jì)和控制算法研究[D];東北大學(xué);2005年
5 褚紅杰;基于電液比例壓力—流量試驗(yàn)臺(tái)閥控馬達(dá)速度控制系統(tǒng)的分析研究[D];長(zhǎng)安大學(xué);2005年
6 李曉丹;模糊PID控制器的設(shè)計(jì)研究[D];天津大學(xué);2005年
7 于瑛;應(yīng)用于變風(fēng)量(VAV)空調(diào)系統(tǒng)的模糊自適應(yīng)控制研究[D];西安建筑科技大學(xué);2006年
8 王琦;多工位生產(chǎn)線控制及電液伺服系統(tǒng)控制性能的研究[D];沈陽(yáng)工業(yè)大學(xué);2007年
9 李淑萍;基于PMAC的慢走絲線切割機(jī)床數(shù)控系統(tǒng)的研究[D];蘇州大學(xué);2007年
10 張信軍;精鍛機(jī)夾頭設(shè)計(jì)及關(guān)鍵件有限元分析[D];河北工業(yè)大學(xué);2007年
本文編號(hào):1874571
本文鏈接:http://sikaile.net/falvlunwen/zhishichanquanfa/1874571.html