高效相變工業(yè)余熱回收機(jī)理研究
本文選題:潛熱型納米相變熱功能流體 切入點(diǎn):微通道 出處:《南昌大學(xué)》2013年碩士論文
【摘要】:作為高能耗行業(yè)代表,過程工業(yè)余熱資源亟待回收利用,而相關(guān)技術(shù)與理論的研究還處在起步階段,尚不能實(shí)現(xiàn)低溫工業(yè)余熱高效回收利用,潛熱型納米相變熱功能流體微通道余熱回收裝置是解決這一技術(shù)難題最先進(jìn)的余熱回收技術(shù),但其工業(yè)應(yīng)用仍存在許多關(guān)鍵科學(xué)問題亟待研究。弄清潛熱型納米相變熱功能流體的非常規(guī)流動(dòng)和強(qiáng)化傳熱機(jī)理,是解決工業(yè)余熱高效回收的理論前提,該研究對(duì)開發(fā)具有我國(guó)知識(shí)產(chǎn)權(quán)工業(yè)余熱高效回收技術(shù)和裝置,以及我國(guó)的節(jié)能和環(huán)保事業(yè)均具有重要意義。為此,本文對(duì)潛熱型納米相變熱功能流體在微通道內(nèi)層流流動(dòng)時(shí)的強(qiáng)化傳熱機(jī)理和潛熱型納米相變熱功能流體微通道余熱回收裝置的余熱回收機(jī)理進(jìn)行了數(shù)值模擬研究。本文取得主要成果如下: (1)本文基于強(qiáng)化傳熱的場(chǎng)協(xié)同原理和潛熱型納米相變熱功能流體有機(jī)結(jié)合,建立了潛熱型納米相變熱功能流體微通道強(qiáng)化傳熱物理機(jī)制及潛熱型納米相變熱功能流體在微通道內(nèi)流動(dòng)與傳熱問題相適應(yīng)的數(shù)值模擬方法。 (2)研究表明,在定熱流條件和定壁溫條件下都有,納米PCM顆粒濃度c、納米PCM顆粒的相變潛熱LH和雷諾數(shù)Re增大,則微通道潛熱型納米相變熱功能流體傳熱強(qiáng)化效果增強(qiáng),而初始過冷度Ti-Ts、相變溫度范圍TL-TS對(duì)納米相變流體強(qiáng)化傳熱影響不是很明顯。 (3)研究表明,潛熱型納米相變熱功能流體微通道余熱回收裝置比傳統(tǒng)單相流體微通道余熱回收裝置具有明顯的強(qiáng)化傳熱效果,其強(qiáng)化傳熱程度隨著納米PCM顆粒濃度c、納米PCM顆粒的相變潛熱LH、輸運(yùn)流體流速u增大而增強(qiáng),在c=25%和LH=271kJ/kg二種條件下,其強(qiáng)化傳熱效果分別高達(dá)34.9%和39.16%;提高c、LH、u,有利于提高潛熱型納米相變熱功能流體微通道工業(yè)余熱回收裝置的強(qiáng)化傳熱效果。
[Abstract]:As a representative of high energy consumption industry, the waste heat resource of process industry needs to be recycled, but the research of related technology and theory is still in its infancy, and it can not realize the efficient recovery and utilization of low temperature industrial waste heat. The latent heat recovery device with nanometer phase change heat function fluid microchannel is the most advanced waste heat recovery technology to solve this technical problem. However, there are still many key scientific problems to be studied in industrial application. It is a theoretical prerequisite for efficient recovery of industrial waste heat to make clear the unconventional flow and enhanced heat transfer mechanism of latent heat nano-phase change heat functional fluid. This research is of great significance to the development of efficient recovery technology and equipment for waste heat in the intellectual property industry of China, as well as to the cause of energy conservation and environmental protection in China. In this paper, the mechanism of enhanced heat transfer of latent heat nanocrystalline phase change heat functional fluid in laminar flow in microchannel and the residual heat recovery mechanism of micro channel waste heat recovery device of latent heat nano phase change heat functional fluid have been numerically simulated. ... the main achievements of this paper are as follows:. 1) based on the field synergy principle of enhanced heat transfer and the organic combination of latent heat type nano-phase change thermal functional fluid, The physical mechanism of heat transfer enhancement by microchannel of latent heat nanostructured phase change heat functional fluid and the numerical simulation method for the flow of latent heat nano phase change heat functional fluid in microchannel are established. The results show that under constant heat flux and constant wall temperature, the heat transfer enhancement effect of nanocrystalline PCM particle concentration c, phase change latent heat LH and Reynolds number re of nanometer PCM particle increases, and the heat transfer enhancement effect of micro channel latent heat type nano phase change thermal functional fluid is enhanced. However, the effect of initial undercooling Ti-Ts and phase transition temperature range (TL-TS) on the enhancement of heat transfer of nanocrystalline phase change fluids is not obvious. The results show that the latent heat type nano-phase change heat functional fluid micro-channel heat recovery device has obvious heat transfer enhancement effect compared with the traditional single-phase fluid micro-channel residual heat recovery device. The degree of heat transfer enhancement increases with the increase of the concentration of nanometer PCM particles, the latent heat of phase change of PCM nanoparticles, and the flow rate u of the transport fluid. Under the conditions of 25% C ~ (2 +) and 2% LH=271kJ/kg, the enhancement of heat transfer is enhanced. The heat transfer enhancement effect is up to 34.9% and 39.16%, respectively, and the enhancement of the heat transfer efficiency of the industrial waste heat recovery device of the latent heat nanosized phase change heat function fluid microchannel is improved.
【學(xué)位授予單位】:南昌大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TQ021.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 邱利民,孫大明,張武,陳國(guó)邦,甘智華,嚴(yán)偉林;大型多功能熱聲發(fā)動(dòng)機(jī)的研制及初步實(shí)驗(yàn) 第一部分 熱聲發(fā)動(dòng)機(jī)的研制[J];低溫工程;2003年02期
2 張奕;張小松;;石蠟在管外凝固過程的理論和實(shí)驗(yàn)分析[J];化工學(xué)報(bào);2008年06期
3 孫文哲;鄧申江;曹巍;吳延嘉;;新型膜蒸餾傳質(zhì)回?zé)岬奈帐街评溲h(huán)[J];化工學(xué)報(bào);2008年S2期
4 楊猛;董輝;杜濤;;鋼鐵企業(yè)余熱吸收制冷[J];節(jié)能;2009年09期
5 王中錚,鄭實(shí),呂靜;開發(fā)利用工業(yè)余熱于溴化鋰吸收式制冷[J];節(jié)能;1997年06期
6 沈?qū)W忠;張仁元;;相變儲(chǔ)能材料的研究和應(yīng)用[J];節(jié)能技術(shù);2006年05期
7 ;我國(guó)工業(yè)節(jié)能現(xiàn)狀調(diào)研和對(duì)策[J];中國(guó)科學(xué)院院刊;2010年03期
8 陳愛英,汪學(xué)英;相變儲(chǔ)能材料及其應(yīng)用[J];洛陽(yáng)工業(yè)高等專科學(xué)校學(xué)報(bào);2002年04期
9 任庚坡;任春江;魏玉劍;;余熱利用技術(shù)與應(yīng)用[J];上海節(jié)能;2009年05期
10 董素霞,岳永亮,黃英;高溫水大溫差溴化鋰吸收式制冷機(jī)[J];制冷與空調(diào);2004年06期
,本文編號(hào):1653980
本文鏈接:http://sikaile.net/falvlunwen/zhishichanquanfa/1653980.html