基于AHP-Apriori改進(jìn)算法在“兩搶”犯罪因素分析中的研究
[Abstract]:With the continuous development of the information construction of public security department and the practice of many years, the public security information center has accumulated a large amount of crime data. However, at present, the public security departments in the use of existing crime data, many times only stay in the traditional simple query, statistics and other functions. Compared with traditional data analysis techniques, data mining technology can extract hidden laws and trends from existing crime data. Therefore, how to use data mining technology to analyze all kinds of factors affecting crime is an urgent need to be studied in public security system. The crime of "two robberies" is a multiple case which has a great influence on public security. It endangers the life and property of citizens at any time, so reducing the frequent occurrence of cases is an important task of the public security organs. The emergence of crime is controlled by various factors, and it is also the comprehensive result of the interaction of various factors. If we can find the law contained in the crime data and take preventive measures in advance, we can reduce the crime rate. This paper attempts to apply AHP and Apriori association rules algorithm to the analysis of the influencing factors of crime, and try to obtain some causes of crime and provide valuable information for crime prevention and education. Therefore, in the public security prevention and control has the value of research and practical significance. This paper first puts forward four factors that influence the crime of "two robberies": personal factor, social factor, time factor and space factor, and analyzes the influence of four factors on crime. Then, the idea and implementation process of AHP and Apriori association rule algorithm are described in detail. Finally, aiming at the deficiency of Apriori algorithm which can not carry out multi-level correlation analysis and cannot judge the transactional importance, combining with AHP analytic hierarchy process to carry out multi-level analysis and weighting, the weights and association rules of the influencing factors of crime are obtained. Some laws and characteristics of the influencing factors of "two robberies" crime are analyzed from the result, which provides a new direction for the prevention and control of public security.
【學(xué)位授予單位】:江西師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP311.13;D917.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 葉文菁;吳升;;基于加權(quán)時(shí)空關(guān)聯(lián)規(guī)則的公交扒竊犯罪模式識(shí)別[J];地球信息科學(xué)學(xué)報(bào);2014年04期
2 李曉飛;;云計(jì)算環(huán)境下Apriori算法的MapReduce并行化[J];長(zhǎng)春工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年06期
3 王麗華;;“兩搶一盜”犯罪問(wèn)題研究——基于社會(huì)治理視角的分析[J];人民論壇;2012年27期
4 饒正嬋;范年柏;;關(guān)聯(lián)規(guī)則挖掘Apriori算法研究綜述[J];計(jì)算機(jī)時(shí)代;2012年09期
5 唐德權(quán);張悅;賀永恒;肖自紅;;基于圖數(shù)據(jù)挖掘算法的犯罪規(guī)律研究及應(yīng)用[J];計(jì)算機(jī)技術(shù)與發(fā)展;2011年11期
6 包曄;;關(guān)聯(lián)分析技術(shù)在刑事犯罪分析中的應(yīng)用[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2011年20期
7 劉玉順;;天津侵財(cái)犯罪高發(fā)原因和對(duì)策[J];中國(guó)刑事警察;2008年04期
8 劉君強(qiáng),王勛,孫曉瑩;多維多層關(guān)聯(lián)規(guī)則有效挖掘的新算法[J];南京大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年02期
9 段云峰,宋俊德,李劍威,舒華英;基于數(shù)量的關(guān)聯(lián)規(guī)則挖掘[J];北京郵電大學(xué)學(xué)報(bào);2002年04期
10 王孝寧 ,何苗,何欽成;層次分析法判斷矩陣的構(gòu)成方法及比較[J];中國(guó)衛(wèi)生統(tǒng)計(jì);2002年02期
相關(guān)碩士學(xué)位論文 前10條
1 董金鳳;數(shù)據(jù)挖掘中關(guān)聯(lián)規(guī)則算法的改進(jìn)與并行化處理[D];哈爾濱理工大學(xué);2016年
2 邵曉康;Apriori算法研究及在本科招生數(shù)據(jù)挖掘中應(yīng)用[D];北京交通大學(xué);2016年
3 馬東東;基于AWS云平臺(tái)GPU集群加速的Apriori算法的研究和應(yīng)用[D];大連理工大學(xué);2015年
4 趙宏利;改進(jìn)的Apriori算法在大學(xué)生心理分析中的研究[D];華中師范大學(xué);2015年
5 黃鈞晟;云計(jì)算環(huán)境下基于Apriori算法的氣象數(shù)據(jù)關(guān)聯(lián)規(guī)則分析研究[D];南京信息工程大學(xué);2015年
6 王達(dá)明;基于云計(jì)算與醫(yī)療大數(shù)據(jù)的Apriori算法的優(yōu)化研究[D];北京郵電大學(xué);2015年
7 梁紫藤;基于層次分析法的在線購(gòu)物網(wǎng)站用戶行為分析[D];北京工業(yè)大學(xué);2014年
8 鄒軍;城區(qū)多發(fā)性侵財(cái)犯罪研究[D];中南大學(xué);2013年
9 周帥;基于數(shù)據(jù)挖掘技術(shù)的犯罪相關(guān)因素分析[D];大連海事大學(xué);2012年
10 劉博;基于數(shù)據(jù)挖掘技術(shù)的犯罪因素關(guān)聯(lián)性分析[D];大連海事大學(xué);2011年
,本文編號(hào):2281355
本文鏈接:http://sikaile.net/falvlunwen/fanzuizhian/2281355.html