整合多組學數(shù)據(jù)的癌癥生物標志物的識別與研究
[Abstract]:In the field of cancer research and medicine, biomarkers can diagnose the condition of cancer patients in the early stage, provide timely treatment methods, and can also predict the condition of cancer, which has a very high guiding value for the treatment of cancer. Many studies have reported that genes can be used as candidate biomarkers for the diagnosis, prognosis and efficacy of diseases or cancer. With the development of high-pass sequencing technology, the research of cancer biomarkers has also begun to develop from single group data to multi-group data, but the integration of multi-group data is still in the stage of simple integration, and the internal relationship of multi-group data can not be found. We integrate gene expression data and DNA methylation data to study and analyze cancer biomarkers. The research contents of this paper are as follows: 1. The traditional feature selection methods often consider the high classification performance of feature selection results in high-dimensional small sample data, but ignore the stability of feature selection results. In order to select the characteristics of gene expression data, this paper proposes to preserve the important genes related to cancer recognized by researchers, and to obtain a stable method of gene feature combination. 2, because 450K methylated chip covers only 2% of all methylated sites, simple fusion may lead to biased results. In this paper, a method of fusion between extended 450K methylated chip data and gene expression data is proposed for the first time, and cancer biomarkers are analyzed from many levels, and as much as possible, more information is retained when fusion of multigroup data, and stable and reliable potential cancer biomarkers with popularizing value are obtained. The classification accuracy and reliability of this method are higher than those of the traditional method. In this paper, a variety of cancer specific potential cancer biomarkers and potential cancer biomarkers common to a variety of cancers are analyzed to provide guidance and help for medical research and clinical treatment. 3. A classification model based on fuzzy rules is constructed to verify the classification effect of the potential cancer biomarkers selected in this paper for normal and cancer samples. By cross-verifying and comparing the traditional method of gene expression and the simple fusion method of DNA methylation data, it is found that the method in this paper is superior to the traditional method, and the prediction results of independent samples are also better than the traditional method. Finally, based on the potential cancer biomarkers found, a classification rule with higher robustness and easy to understand is obtained.
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:R730.4
【相似文獻】
相關(guān)期刊論文 前10條
1 方福德;生物標志物(biological marker)[J];中華預防醫(yī)學雜志;2001年01期
2 王三虎,高星;鉛的生物標志物研究[J];中國職業(yè)醫(yī)學;2002年01期
3 鄭玉新,莊志雄;基因組時代生物標志物研究的機遇與挑戰(zhàn)[J];中華預防醫(yī)學雜志;2005年03期
4 黃忠;;生物標志物的蛋白組學研究-高通量質(zhì)譜分析[J];瀘州醫(yī)學院學報;2011年05期
5 葉細標,倪為民,傅華;分子生物標志物及其應用[J];中國工業(yè)醫(yī)學雜志;2002年01期
6 邵華;生物標志物的研究進展[J];職業(yè)與健康;2002年09期
7 胡訓軍;肖萍;王文靜;陳良;盧偉;;三氯乙烯生物標志物的研究進展[J];環(huán)境與職業(yè)醫(yī)學;2006年01期
8 肖忠海;王林;;癌癥生物標志物[J];國外醫(yī)學.藥學分冊;2006年06期
9 賈光;沈惠麒;;以生物標志物研究為切入點推動生物監(jiān)測的發(fā)展[J];中華預防醫(yī)學雜志;2006年06期
10 ;《生物監(jiān)測與生物標志物理論基礎(chǔ)及應用》新書預告[J];中華勞動衛(wèi)生職業(yè)病雜志;2006年12期
相關(guān)會議論文 前10條
1 陳建平;鄧春萍;宋孚慶;張大江;;應用生物標志物定量計算混合原油油源的數(shù)學模型[A];第十屆全國有機地球化學學術(shù)會議論文摘要匯編[C];2005年
2 王曉蓉;;分子生物標志物在水環(huán)境有機污染的早期預警研究進展[A];有機污染環(huán)境化學前沿與環(huán)境可持續(xù)發(fā)展戰(zhàn)略論文集[C];2006年
3 申秀萍;賈長虹;;十二五“重大新藥創(chuàng)制”毒性生物標志物與人源化動物模型關(guān)鍵技術(shù)課題簡介[A];2013年(第三屆)中國藥物毒理學年會暨藥物非臨床安全性評價研究論壇論文摘要[C];2013年
4 申秀萍;賈長虹;;十二五“重大新藥創(chuàng)制”毒性生物標志物與人源化動物模型關(guān)鍵技術(shù)課題簡介[A];中國藥理學與毒理學雜志(2013年6月第27卷第3期)[C];2013年
5 謝鑫友;;新技術(shù)在生物標志物篩選中的應用(英文)[A];2007年浙江省醫(yī)學檢驗學學術(shù)年會論文匯編[C];2007年
6 馬t,
本文編號:2502961
本文鏈接:http://sikaile.net/yixuelunwen/zlx/2502961.html