循環(huán)腫瘤細胞分離方法的建立和臨床應(yīng)用的探索
[Abstract]:Objective To enrich circulating tumor cells (CTC) with Opti Prep density gradient centrifugation combined with immunomagnetic beads, and to establish a simple and efficient method for enriching and identifying peripheral blood CTC in cancer patients by combining multi-color immunofluorescence labeling and fluorescence in situ hybridization technique. The effect was used in the detection of CTC counts in peripheral blood of patients with clinical tumors. On the basis of this, a single cell acquisition technology platform was established to study the single cell group study of specific CTC cells or CTC cells. Microdissection and microscopic aspiration after the CTC were observed to obtain single cells for molecular identification, which would facilitate molecular identification of CTCs, develop new therapeutic targets, and produce a more effective treatment regimen for cancer patients. Method 1. The cell components of peripheral blood were obtained by gradient centrifugation of Opti Prep solution with different densities and different density cells. Multiple tumor cells, such as QGY-7701, were selected to be mixed with peripheral blood to simulate the state of circulating tumor cells in vivo. The efficiency, recovery and activity of Opti Prep liquid and Ficoll liquid enriched tumor cells were compared. The optimal circulating tumor cell enrichment system was established by density gradient centrifugation combined with immunomagnetic beads. Five tumor cell lines were selected: liver cancer cell (QGY-7701, Huh-7, NCI-7721), ovarian cancer cell HO-8910, lung cancer cell A549, and cell immunofluorescent staining of CD45 and CK18 antibodies respectively. CIK cells were used as control. FISH markers CIK cell chromosome number. the tumor cells are mixed with normal human peripheral blood to simulate peripheral blood circulating tumor cells to enrich, the immunofluorescence technique is combined with FISH detection, and the tumor cells are accurately identified. Combined enrichment and detection methods accurately detect peripheral blood circulating tumor cells in cancer patients and conduct methodological verification evaluation. Based on the patient's CTC test number and clinical outcome data, we established the effect of CTC detection on the prognosis of patients with tumor. Single target cell and pure target cell population were extracted by microdissection and microdissection. The single cell was captured by Carl Zeiss PALM Combi System and Cell Ector Plus, and the gene expression of tumor cells was detected by RT-PCR. Results 1. Opti Prep liquid could effectively separate monocytes and enrich QGY-7701 tumor cells in white membrane. The concentration of tumor cells in Oti Prep was higher than that of Ficoll (P0.05). In single cell operation, 50 or so tumor cells were injected into the blood-simulated circulating tumor cells, and the recovery rates of Opti Prep and Ficoll were more consistent. Immunofluorescence showed that only CIK cells observed CD45 red fluorescence, while CK18 was only CIK cells without green fluorescence. The results of fluorescence in situ hybridization showed that the cell chromosome could be marked by fluorescence in situ hybridization. By examining the methods of enriching and detecting circulating tumor cells in the peripheral blood of 33 patients enrolled, the existence of circulating tumor cells was found, which indicated that the established method could effectively detect the CTC in the blood of cancer patients. The results showed that the number of CTC corresponded to shorter survival and poor prognosis. According to the experimental requirements, the study relates to two single cell acquisition technologies capable of identifying fluorescent labels, and the results show that the single cell can be rapidly and accurately obtained, the problem of cell heterogeneity is solved, pure target cells are obtained, and the next step molecular identification of a small amount of CTCs is provided with the opportunity, and a good application prospect is displayed. Conclusion This study successfully established Opti Prep density gradient centrifugation combined with immunomagnetic beads to enrich CTC, and combined with fluorescent in situ hybridization technique to detect CTC, and has the effect of CTC identification in peripheral blood of clinical tumor patients. in addition, attempt to acquire rare circulating tumor cells by single cell capture novel technology, identify and further gene sequencing research search directions for subsequent single cell target gene expression identification and further gene sequencing, indicate that prognosis and prediction information of cancer refer to a bright direction, Provide reference for the reasonable choice of individualized instruction therapy and medication.
【學(xué)位授予單位】:浙江理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:R730
【共引文獻】
相關(guān)期刊論文 前10條
1 邱必軍;張會祿;李萍;夏強;翟博;;射頻消融聯(lián)合激活的樹突狀細胞疫苗對新西蘭大白兔肝臟原位種植VX2腫瘤治療的實驗研究[J];肝膽外科雜志;2013年04期
2 張澤波;江應(yīng)安;;核苷類似物抗病毒治療慢性乙型肝炎患者肝癌發(fā)生的因素分析[J];實用肝臟病雜志;2013年05期
3 張毅;張君薇;謝淑麗;王廣義;;RNAi沉默STAT3基因聯(lián)合mTOR抑制劑rapamycin誘導(dǎo)BEL-7402肝癌細胞凋亡[J];吉林大學(xué)學(xué)報(醫(yī)學(xué)版);2013年05期
4 易永祥;趙偉;韓建波;宋艷;丁瀅;周鎮(zhèn)先;;經(jīng)肝內(nèi)注射腫瘤細胞建立小鼠肝癌實驗?zāi)P偷男Ч^察[J];肝膽胰外科雜志;2013年05期
5 宋春麗;任吉華;冉龍寬;李宛蔚;陳娟;;SIRT2沉默對肝癌細胞的遷移和侵襲能力的影響[J];第三軍醫(yī)大學(xué)學(xué)報;2013年24期
6 吳冬梅;劉繁榮;羅佳;章敬成;;CCL5、糖尿病與肝癌之間相互關(guān)系的研究進展[J];廣東醫(yī)學(xué);2013年23期
7 張薇;張龍江;黃偉;;動態(tài)對比增強MRI的基本原理及其在肝臟病變的應(yīng)用[J];國際醫(yī)學(xué)放射學(xué)雜志;2014年01期
8 Anna-Maria Tanase;Traian Dumitrascu;Simona Dima;Razvan Grigorie;Agnes Marchio;Pascal Pineau;Irinel Popescu;;Influence of hepatitis viruses on clinico-pathological profiles and long-term outcome in patients undergoing surgery for hepatocellular carcinoma[J];Hepatobiliary & Pancreatic Diseases International;2014年02期
9 周陳杰;宮緒萌;蔡理全;汪艷;高毅;;改良的從肝硬化到產(chǎn)生肝癌的大鼠模型[J];南方醫(yī)科大學(xué)學(xué)報;2014年04期
10 趙世印;雷旭;李芳;李金科;譚華炳;;HBV感染抗病毒治療中發(fā)生肝細胞癌24例臨床分析[J];中國肝臟病雜志(電子版);2014年01期
相關(guān)會議論文 前2條
1 李娜;何榮祥;張正濤;曹一平;張瑋瑩;;循環(huán)腫瘤細胞俘獲及微流控芯片多通道檢測[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第02分會:分離分析及微、納流控新方法[C];2014年
2 劉新會;陳逢生;李愛民;羅榮城;;糖尿病與肝細胞癌相關(guān)性的研究進展[A];中國腫瘤內(nèi)科進展 中國腫瘤醫(yī)師教育(2014)[C];2014年
相關(guān)博士學(xué)位論文 前10條
1 楊少波;人胃腺癌相關(guān)基因譜研究[D];中國人民解放軍軍醫(yī)進修學(xué)院;2002年
2 孔麗;RbAp48在HPV致宮頸癌中的功能研究[D];山東大學(xué);2007年
3 李元元;乙肝相關(guān)性肝癌的危險因素及其與淋巴細胞亞群關(guān)系的研究[D];中國人民解放軍軍醫(yī)進修學(xué)院;2013年
4 劉志明;廣西三緯度地區(qū)人群AFB_1暴露及其與DNA氧化損傷和修復(fù)關(guān)系的研究[D];廣西醫(yī)科大學(xué);2013年
5 鄧歡;AEG-1促進肝癌細胞失巢凋亡抵抗的機制及自噬在其中作用的研究[D];華中科技大學(xué);2013年
6 丁松明;腫瘤微環(huán)境不同成分在肝癌侵襲轉(zhuǎn)移中的作用研究[D];浙江大學(xué);2013年
7 楊芳;PcG蛋白EZH2、Bmi-1及MiR-203協(xié)同調(diào)控在肝癌肝移植術(shù)后腫瘤復(fù)發(fā)和轉(zhuǎn)移中的作用[D];福建醫(yī)科大學(xué);2013年
8 畢茜;miR-125a通過靶向MMP11和VEGF抑制肝癌細胞的增殖和轉(zhuǎn)移[D];第四軍醫(yī)大學(xué);2013年
9 劉俠;肝細胞癌N-糖鏈的結(jié)構(gòu)改變及其機制研究[D];哈爾濱工業(yè)大學(xué);2013年
10 劉超;BEZ235體外抑制肝癌HepG2細胞的分子機制以及Six1蛋白過表達與肝癌生物學(xué)特點的關(guān)系[D];延邊大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 王爽;鼻咽低分化鱗狀細胞癌分子分類的初步研究[D];第一軍醫(yī)大學(xué);2004年
2 張薇;子宮頸癌癌灶及癌灶旁鱗狀上皮內(nèi)病變HPV亞型的分布[D];河北醫(yī)科大學(xué);2008年
3 馬德亮;乳腺癌患者循環(huán)腫瘤細胞的檢測及其臨床應(yīng)用[D];蘇州大學(xué);2010年
4 胡鵬;微波消融高齡肝癌患者的臨床研究及射頻與手術(shù)治療小肝癌療效的meta分析[D];蘇州大學(xué);2013年
5 張健;肝動脈化療栓塞聯(lián)合三維適形放射治療原發(fā)性肝癌伴門靜脈癌栓的生存分析[D];蘇州大學(xué);2013年
6 賈慧麗;PIWIL2基因在肝癌組織中mRNA及蛋白的表達[D];鄭州大學(xué);2013年
7 王姍;復(fù)制選擇性溶腫瘤腺病毒Adll-Tel-GFP在肺癌CTCs檢測中的應(yīng)用[D];鄭州大學(xué);2013年
8 王冬;核因子-κB在去甲斑蝥素誘導(dǎo)肝癌細胞SMMC-7721凋亡中的作用[D];河北醫(yī)科大學(xué);2013年
9 董棟;MDM2基因組成型啟動子40-bp插入/缺失多態(tài)性與肝細胞肝癌易感性的關(guān)聯(lián)研究[D];蘇州大學(xué);2013年
10 孫藜瑋;EGCG對小鼠H_(22)腫瘤生長及VEGF、PCNA表達的影響[D];青島大學(xué);2013年
,本文編號:2279835
本文鏈接:http://sikaile.net/yixuelunwen/zlx/2279835.html