一種改進(jìn)的SVM算法在乳腺癌診斷方面的應(yīng)用
發(fā)布時(shí)間:2018-09-19 12:26
【摘要】:針對(duì)計(jì)算機(jī)輔助診斷(CAD)技術(shù)在乳腺癌疾病診斷準(zhǔn)確率的優(yōu)化問題,提出了一種基于隨機(jī)森林模型下Gini指標(biāo)特征加權(quán)的支持向量機(jī)方法(RFG-SVM)。該方法利用了隨機(jī)森林模型下的Gini指數(shù)衡量各個(gè)特征對(duì)分類結(jié)果的重要性,構(gòu)造具有加權(quán)特征向量核函數(shù)的支持向量機(jī),并在乳腺癌疾病診斷方面加以應(yīng)用。經(jīng)理論分析和實(shí)驗(yàn)數(shù)據(jù)驗(yàn)證,相比于傳統(tǒng)的支持向量機(jī)(SVM),該方法提升了分類預(yù)測(cè)的性能,其結(jié)果與最新的方法相比也具有一定的競(jìng)爭(zhēng)力,而且在醫(yī)療診斷應(yīng)用方面更具優(yōu)勢(shì)。
[Abstract]:In order to optimize the diagnostic accuracy of computer-aided diagnosis (CAD) in breast cancer, a new support vector machine (RFG-SVM) method based on Gini index weighted under stochastic forest model is proposed. This method uses the Gini index under the stochastic forest model to measure the importance of each feature to the classification result, constructs the support vector machine with weighted eigenvector kernel function, and applies it to the diagnosis of breast cancer disease. Through theoretical analysis and experimental data verification, compared with the traditional support vector machine (SVM), this method improves the performance of classification and prediction, and the results are competitive compared with the latest methods, and it has more advantages in medical diagnosis application.
【作者單位】: 蘭州交通大學(xué)電子與信息工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(61163010) 甘肅省自然科學(xué)基金(1308RJZA111) 蘭州市科技計(jì)劃(2015-2-99)
【分類號(hào)】:R737.9;TP391.7
[Abstract]:In order to optimize the diagnostic accuracy of computer-aided diagnosis (CAD) in breast cancer, a new support vector machine (RFG-SVM) method based on Gini index weighted under stochastic forest model is proposed. This method uses the Gini index under the stochastic forest model to measure the importance of each feature to the classification result, constructs the support vector machine with weighted eigenvector kernel function, and applies it to the diagnosis of breast cancer disease. Through theoretical analysis and experimental data verification, compared with the traditional support vector machine (SVM), this method improves the performance of classification and prediction, and the results are competitive compared with the latest methods, and it has more advantages in medical diagnosis application.
【作者單位】: 蘭州交通大學(xué)電子與信息工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(61163010) 甘肅省自然科學(xué)基金(1308RJZA111) 蘭州市科技計(jì)劃(2015-2-99)
【分類號(hào)】:R737.9;TP391.7
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 章永來;史海波;尚文利;周曉鋒;紀(jì)曉楠;;面向乳腺癌輔助診斷的改進(jìn)支持向量機(jī)方法[J];計(jì)算機(jī)應(yīng)用研究;2013年08期
2 夏書銀;王越;張權(quán);;核空間結(jié)合樣本中心角度的支持向量機(jī)增量算法[J];計(jì)算機(jī)應(yīng)用與軟件;2012年04期
3 汪廷華;田盛豐;黃厚寬;;特征加權(quán)支持向量機(jī)[J];電子與信息學(xué)報(bào);2009年03期
4 張翔;肖小玲;徐光yP;;基于樣本之間緊密度的模糊支持向量機(jī)方法[J];軟件學(xué)報(bào);2006年05期
5 范昕煒,杜樹新,吳鐵軍;可補(bǔ)償類別差異的加權(quán)支持向量機(jī)算法[J];中國(guó)圖象圖形學(xué)報(bào);2003年09期
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳辰文;李長(zhǎng)生;王偉;梁靖涵;閆光輝;;一種改進(jìn)的SVM算法在乳腺癌診斷方面的應(yīng)用[J];計(jì)算機(jī)工程與科學(xué);2017年03期
2 曹海歐;張沛超;高翔;;基于模糊支持向量機(jī)的繼電保護(hù)狀態(tài)在線評(píng)價(jià)[J];電力系統(tǒng)保護(hù)與控制;2016年20期
3 鞠哲;曹雋U,
本文編號(hào):2250117
本文鏈接:http://sikaile.net/yixuelunwen/zlx/2250117.html
最近更新
教材專著