天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 醫(yī)學論文 > 腫瘤論文 >

基于皮膚鏡圖像的黑色素瘤形態(tài)模式識別研究

發(fā)布時間:2018-08-17 12:27
【摘要】:黑色素瘤是在臨床中經(jīng)常遇到的一種惡性皮膚腫瘤,同時也是世界上增長最快的癌癥之一。通常皮膚科醫(yī)生通過肉眼觀察和組織病理學活檢的方法來對黑色素瘤進行早期的篩查和確診。盲目進行活檢常常會對患者造成經(jīng)濟上的壓力和身體上不必要的創(chuàng)傷。因此,非創(chuàng)傷性的黑色素瘤自動診斷技術成為了醫(yī)學界急需解決的問題。皮膚鏡圖像形態(tài)模式識別一直是分辨良性腫瘤和惡性素瘤的一項具有挑戰(zhàn)性的任務。因此針對黑色素瘤皮膚鏡圖像的多種形態(tài)模式,本文對基于多標簽學習的惡性黑色素瘤形態(tài)模式識別進行了深入的研究。創(chuàng)新點主要包括以下部分:1.深入研究了黑色素瘤的分割與特征提取方法。為了更好的提取皮膚鏡圖像的特征,提出一種基于區(qū)域一致性的融合算法來對圖像進行分割,將多個分割算法結果進行融合,依據(jù)區(qū)域大小、灰度值、紋理的一致性原則移除與融合結果相矛盾的子區(qū)域,從而得到最終的分割結果。對分割結果分別提取皮損內(nèi)區(qū)域、皮損區(qū)域和皮損外區(qū)域的顏色特征、形狀特征和紋理特征。2.提出了基于手工特征提取的多標簽分類在黑色素瘤模式識別中的應用。對黑色素瘤的形態(tài)模式種類進行了深入研究分析,可明確定義的全局形態(tài)特征主要有八種,其中涉及七種基本模式和一個多成分模式。這七種基本模式包括:網(wǎng)狀模式、球狀模式、鵝卵石模式、星爆模式、平行模式、腔洞模式、均勻模式。通過黑色素瘤的七種基本模式來建立多標簽分類模型,以達到自動識別皮膚鏡圖像中所包含的模式類別的目的。使用Binary Reference算法和ML-kNN算法對黑色素瘤特征向量進行多標簽分類,對兩種算法的多標簽分類結果對比分析發(fā)現(xiàn)ML-kNN算法對黑色素瘤的多種形態(tài)模式的識別相比于Binary Reference算法具有更好的效果。3.提出了基于特征學習的卷積神經(jīng)網(wǎng)絡多標簽分類在黑色素瘤模式識別中的應用。在深度學習框架的基礎上提出了一種改進的方法來實現(xiàn)多標簽分類,將圖像數(shù)據(jù)和多標簽數(shù)據(jù)分別作為網(wǎng)絡的輸入層,然后通過在網(wǎng)絡結構添加Slice層達到多標簽分類的目的,最終得到多標簽分類模型。在利用卷積神經(jīng)網(wǎng)絡對黑色素瘤的形態(tài)模式進行特征自動學習的實驗中,實驗結果表明本文提出的利用卷積神經(jīng)網(wǎng)絡進行多標簽分類效果比基于手工特征的多標簽分類具有顯著的提升。
[Abstract]:Melanoma is a malignant skin tumor often encountered in clinical practice, and it is also one of the fastest growing cancers in the world. Dermatologists usually screen and diagnose melanoma early through naked eye observation and histopathological biopsy. Blind biopsies often cause financial stress and unnecessary physical trauma to patients. Therefore, non-traumatic automatic diagnosis of melanoma has become an urgent problem in medical field. Pattern recognition of dermatoscopic images has been a challenging task in distinguishing benign and malignant tumors. Therefore, for the multiple morphologic patterns of melanoma dermoscope images, this paper studies the morphological pattern recognition of malignant melanoma based on multi-label learning. Innovations include the following parts: 1. The segmentation and feature extraction of melanoma were studied. In order to extract the features of skin mirror image better, a fusion algorithm based on region consistency is proposed to segment the image. The results of multiple segmentation algorithms are fused according to the region size and gray value. The consistency principle of texture removes the subregions which are contradictory to the fusion results, and the final segmentation results are obtained. The color features, shape features and texture features of the inner region, the lesion region and the outer area of the skin lesions were extracted from the segmentation results. The application of multi-label classification based on manual feature extraction in melanoma pattern recognition is proposed. The morphological patterns of melanoma were studied and analyzed. There are eight kinds of global morphological features which can be clearly defined, including seven basic patterns and one multi-component pattern. The seven basic models include reticular model, spherical model, cobblestone model, starburst model, parallel mode, cavity model, and uniform mode. Through seven basic patterns of melanoma, a multi-label classification model is established to automatically identify the pattern categories contained in the dermatoscopic image. Binary Reference algorithm and ML-kNN algorithm are used to classify melanoma feature vectors. The comparison and analysis of the multi-label classification results of the two algorithms show that the ML-kNN algorithm has a better effect than the Binary Reference algorithm in the recognition of multiple morphologic patterns of melanoma. This paper presents the application of convolution neural network multi-label classification based on feature learning in melanoma pattern recognition. Based on the deep learning framework, an improved method is proposed to realize multi-label classification. Image data and multi-label data are used as the input layer of the network, and then the multi-label classification is achieved by adding the Slice layer to the network structure. Finally, multi-label classification model is obtained. In the experiment of using convolutional neural network to study the morphologic pattern of melanoma, The experimental results show that the effectiveness of multi-label classification based on convolution neural network is significantly improved than that of multi-label classification based on manual features.
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:R739.5;TP391.41

【參考文獻】

相關期刊論文 前2條

1 孟如松;孟曉;姜志國;謝鳳英;劉瑋;羅衛(wèi);郭廣進;蔡瑞康;;基于國人皮膚鏡黑素細胞腫瘤圖像的智能化分類與識別研究[J];中國體視學與圖像分析;2012年03期

2 孟如松;趙廣;;皮膚鏡圖像分析技術的基礎與臨床應用[J];臨床皮膚科雜志;2008年04期

,

本文編號:2187624

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/zlx/2187624.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶439ff***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
好吊日在线观看免费视频| 在线免费观看一二区视频| 字幕日本欧美一区二区| 欧美日韩乱一区二区三区| 色婷婷在线精品国自产拍| 欧美日韩三区在线观看| 日本午夜免费啪视频在线| 国产精品福利一级久久| 欧美一级黄片免费视频| 日韩一区二区三区观看| 色老汉在线视频免费亚欧| 91在线爽的少妇嗷嗷叫| 国产欧美日韩在线一区二区| 国产传媒免费观看视频| 91精品蜜臀一区二区三区| 大香伊蕉欧美一区二区三区| 老鸭窝精彩从这里蔓延| 久久精品国产99精品亚洲| 日韩成人免费性生活视频| 日韩精品一区二区三区av在线| 日本不卡在线视频你懂的| 欧美日韩精品一区二区三区不卡| 久久热九九这里只有精品| 久久精品国产亚洲av麻豆尤物 | 国产一区日韩二区欧美| 开心五月激情综合婷婷色| 国产一二三区不卡视频| 国产一级二级三级观看| 麻豆一区二区三区精品视频| 欧美日韩国产一级91| 区一区二区三中文字幕| 亚洲免费黄色高清在线观看| 国产成人精品在线一区二区三区| 亚洲最大的中文字幕在线视频| 欧美胖熟妇一区二区三区| 91欧美日韩一区人妻少妇| 美国欧洲日本韩国二本道| 国产在线小视频你懂的| 国产精品香蕉免费手机视频| 中文精品人妻一区二区| 五月的丁香婷婷综合网|