重離子對(duì)運(yùn)動(dòng)腫瘤靶區(qū)的適形照射治療方法研究
[Abstract]:Heavy ion beams, due to their inverted depth dose distribution (Bragg peak) characteristics and high relative biological effects, can effectively protect normal tissues while killing tumor cells. They are considered as the best radiotherapy in the 21st century. However, in clinic, some tumors are located in moving organs. Target movement makes it difficult to implement the treatment plan. As the target is in motion, the actual and planned positions of the irradiation points may be offset, resulting in the relative position of the irradiation points in the target area. In order to protect the normal tissues around the target area and protect the normal tissues effectively, ion beam radiation therapy can be further developed. Based on the passive and active beam delivery systems of HIRFL-CSR and HIMM, a series of ion beam conformal intensity modulated radiation therapy (IMRT) techniques for moving tumor targets have been developed in this paper. The main research results and contents are as follows: (1) A 4D-CT scanning method for moving target has been developed. Based on Siemens Sensation Open CT and AZ-733V respiratory gating system, the 4D-CT scanning of the moving tumor target area was realized. A device and method for locating the moving tumor target area in the chest and abdomen with patients breathing in radiotherapy were invented and designed. In order to obtain the ITV (internal target) of tumor target area, we established the CT-WEPL correction curve of the near object through the HIRFL-CSR experiment. The results show that the uniformity of dose distribution in the target area gradually improves with the increase of the slow extraction time of the beam. For the case of multiple scans of the adjustable slow extraction time combination, a reasonable selection of slow extraction time is needed. The uniformity of dose distribution can be obtained only when the extraction time is controlled. For the case of multiple scan of the slow extraction time binding layer, the uniformity of dose is not improved effectively although 10 times of multiple scan are applied. The method of height and width can effectively improve the uniformity of dose distribution in the target area, but the method of reducing the distance between adjacent scanning points can not improve the uniformity of dose distribution in the target area. (3) A human respiratory simulation system was designed and manufactured and a series of motion compensation experiments were carried out based on the system. The system consists of four parts: two-dimensional motion platform, double-wedge system, multi-wedge system and system bench. The motion modes of other subsystems besides the system bench include: function mode, sequence mode, sensor mode, accelerator external control mode and compensation mode. Experiments of half-width compensation for target motion, manual multi-leaf grating active tracking and longitudinal motion compensation. Multiple scanning and increasing the half-width of the beam spot effectively improve the uniformity of dose distribution in the moving target area, but both methods will lead to the increase of dose penumbra. (4) A respiratory gating system was established at the HIRFL-CSR terminal. The system obtains target motion information indirectly by opto NCDT1700-750 laser displacement sensor. Since there is a time delay from the detection of target location to the beam irradiation, an interactive multi-model maneuvering target tracking system was developed. The results show that the uniformity of dose distribution is greatly improved by introducing the respiratory prediction algorithm. The experimental results of the respiratory gating control system of HIRFL-CSR deep-seated treatment terminal show that the dose penumbra is significantly reduced by using the respiratory gating irradiation method in passive beam delivery system. However, breath-gated irradiation greatly increases the irradiation time and significantly reduces the effective dose rate. (5) A bio-audiovisual feedback breath guidance technique is proposed and its effectiveness is verified by experimental tests. Pulsed beam delivery is a complex, inefficient and error-prone method for the treatment of moving targets. We propose a breathing guidance method which effectively combines the individualized audio-visual feedback system, breath holding technology and breathing gating technology based on synchrotron to help patients to adjust their breathing cycles with their own. The results of volunteer test show that the irradiation efficiency and the irradiation accuracy are increased by 1.73-4.65 times and 10 times respectively in passive beam delivery system, and the method is repeatable in the course of fractional treatment. Respiratory-guided irradiation was used to restore the dose distribution to a uniform distribution similar to that of static irradiation. Compared with conventional free-breathing ventilation, respiratory-guided irradiation not only improved the treatment efficiency, but also reduced the residual movement of target area in the door-controlled window. Therefore, the therapeutic effect has been greatly improved.
【學(xué)位授予單位】:中國(guó)科學(xué)院研究生院(近代物理研究所)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:R73-36
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 彭振軍;王曄;韓軍;伍鋼;;單層螺旋CT之螺距對(duì)腫瘤靶區(qū)體積的影響[J];放射學(xué)實(shí)踐;2006年02期
2 彭振軍;王曄;韓軍;李勤;伍鋼;;螺旋CT重建間隔對(duì)腫瘤靶區(qū)體積的影響[J];放射學(xué)實(shí)踐;2006年04期
3 張旭光,曹愛紅,王建,王少卿,劉亮;弧形套針旋轉(zhuǎn)分段注射藥物模合腫瘤靶區(qū)[J];中國(guó)腫瘤;2002年12期
4 馮獻(xiàn)斌;曾自力;;呼吸運(yùn)動(dòng)對(duì)肺癌三維適形放療腫瘤靶區(qū)影響的研究[J];醫(yī)療衛(wèi)生裝備;2014年06期
5 伍銳;陳超敏;;腫瘤靶區(qū)呼吸運(yùn)動(dòng)實(shí)時(shí)反向跟蹤系統(tǒng)在精確放療中的應(yīng)用研究[J];南方醫(yī)科大學(xué)學(xué)報(bào);2010年01期
6 王賢德;何德才;任必勇;鄧超;熊德明;;惡性腫瘤的三維適形放射治療45例[J];腫瘤研究與臨床;2006年09期
7 白廣德;黃丁平;楊健;練祖平;龍學(xué)明;葉日喬;;腫瘤靶區(qū)金標(biāo)植入術(shù)并發(fā)癥分析及處理體會(huì)[J];當(dāng)代醫(yī)學(xué);2009年05期
8 賀鵬博;;模擬可調(diào)控慢引出時(shí)間點(diǎn)掃描對(duì)運(yùn)動(dòng)腫瘤靶區(qū)的適形照射治療(英文)[J];IMP & HIRFL Annual Report;2011年00期
9 白廣德;練祖平;黃丁平;楊健;龍學(xué)明;葉日喬;;115例體部實(shí)體惡性腫瘤賽博刀治療前腫瘤靶區(qū)金標(biāo)植入術(shù)并發(fā)癥分析及處理體會(huì)[J];廣西中醫(yī)學(xué)院學(xué)報(bào);2008年02期
10 李建成;王笑良;趙云輝;劉迪;陳誠(chéng);張秀春;潘建基;;胸中下段食管癌腫瘤靶區(qū)內(nèi)擴(kuò)邊范圍的初步研究[J];腫瘤學(xué)雜志;2013年04期
相關(guān)會(huì)議論文 前8條
1 彭振軍;王曄;韓軍;伍鋼;;單層螺旋CT之螺距對(duì)腫瘤靶區(qū)體積的影響[A];2009中華醫(yī)學(xué)會(huì)影像技術(shù)分會(huì)第十七次全國(guó)學(xué)術(shù)大會(huì)論文集[C];2009年
2 彭振軍;王曄;韓軍;李勤;伍鋼;;螺旋CT之重建間隔對(duì)腫瘤靶區(qū)體積的影響[A];2009中華醫(yī)學(xué)會(huì)影像技術(shù)分會(huì)第十七次全國(guó)學(xué)術(shù)大會(huì)論文集[C];2009年
3 彭振軍;王曄;韓軍;李勤;伍鋼;;螺旋CT不同重建間隔對(duì)腫瘤靶區(qū)體積的影響[A];中華醫(yī)學(xué)會(huì)第十三屆全國(guó)放射學(xué)大會(huì)論文匯編(下冊(cè))[C];2006年
4 彭振軍;王曄;韓軍;伍鋼;;單層螺旋CT不同螺距對(duì)腫瘤靶區(qū)體積的影響[A];中華醫(yī)學(xué)會(huì)第十三屆全國(guó)放射學(xué)大會(huì)論文匯編(下冊(cè))[C];2006年
5 李建成;王笑良;趙云輝;劉迪;陳誠(chéng);張秀春;潘建基;;胸中下段食管癌腫瘤靶區(qū)內(nèi)擴(kuò)邊范圍的初步研究[A];2013華東胸部腫瘤論壇暨第六屆浙江省胸部腫瘤論壇論文集[C];2013年
6 陳松;李亞明;;PET圖像勾畫腫瘤靶區(qū)邊界的水模研究[A];2010中華醫(yī)學(xué)會(huì)影像技術(shù)分會(huì)第十八次全國(guó)學(xué)術(shù)大會(huì)論文集[C];2010年
7 張思云;;肝癌行立體定向適形放療的護(hù)理[A];全國(guó)腫瘤護(hù)理學(xué)術(shù)交流暨專題講座會(huì)議論文匯編[C];2005年
8 張宏濤;吳立麗;任菊娜;唐富龍;趙靜;高貞;李健敏;王娟;;計(jì)算機(jī)治療計(jì)劃系統(tǒng)與~(125)I粒子經(jīng)驗(yàn)公式計(jì)算粒子數(shù)量的對(duì)比[A];第九屆中國(guó)腫瘤微創(chuàng)治療學(xué)術(shù)大會(huì)論文集[C];2013年
相關(guān)重要報(bào)紙文章 前1條
1 陳君;胃腸道腫瘤靶區(qū)化療及泵管研究成功[N];科技日?qǐng)?bào);2007年
相關(guān)博士學(xué)位論文 前1條
1 賀鵬博;重離子對(duì)運(yùn)動(dòng)腫瘤靶區(qū)的適形照射治療方法研究[D];中國(guó)科學(xué)院研究生院(近代物理研究所);2015年
相關(guān)碩士學(xué)位論文 前4條
1 陳松;PET圖像勾畫腫瘤靶區(qū)邊界的水模研究[D];中國(guó)醫(yī)科大學(xué);2010年
2 吳麗鵬;食管癌三維適形放療中腫瘤靶區(qū)移位及劑量學(xué)研究[D];河北醫(yī)科大學(xué);2007年
3 伍銳;應(yīng)用于腫瘤精確放療中的靶區(qū)呼吸運(yùn)動(dòng)控制新方法研究[D];南方醫(yī)科大學(xué);2010年
4 高貞;三維治療計(jì)劃系統(tǒng)模擬不同活度~(125)I粒子植入腫瘤靶區(qū)內(nèi)外劑量學(xué)研究[D];河北醫(yī)科大學(xué);2013年
,本文編號(hào):2186099
本文鏈接:http://sikaile.net/yixuelunwen/zlx/2186099.html