1、ZEB1通過誘導ER-α啟動子甲基化調控乳腺癌抗雌激素治療耐藥的機理研究 2、新型VEGFR2小分子抑制劑YLL54
[Abstract]:Breast cancer is an estrogen-dependent tumor. Estrogen stimulates the proliferation of breast cancer cells by binding to estrogen receptors and activating specific downstream signaling pathways. Antiestrogen therapy, as an important adjuvant therapy for breast cancer, can significantly improve the prognosis of patients. All breast cancer can be treated with anti-estrogen therapy. Congenital and acquired resistance to anti-estrogen drugs can lead to anti-estrogen resistance and lead to treatment failure. Therefore, to clarify the molecular mechanism of anti-estrogen resistance will greatly promote the development of anti-estrogen therapy for breast cancer and improve the treatment of breast cancer patients. The abnormal expression of ER-alpha is closely related to epigenetic regulation. However, the specific mechanism of the down-regulation of ER-alpha expression is still unclear. In this study, we found that the transcription factor ZEB1 can pass through. Recruitment of promoters of methyltransferase DNMT3B and deacetylase HDAC1 to ER-alpha promoters promotes hypermethylation and induces down-regulation of ER-alpha expression in breast cancer cells, leading to resistance to estrogen therapy. First, we found a 267 BP CpG island in the promoter region of ER-alpha gene by online database prediction analysis. Chromatin immunoprecipitation assay with antibodies to DNMT3B and HDAC1 demonstrated that the Cp G island was a potential differentially methylated regulatory region DMR. In our previous study, ZEB1 was found to be negatively correlated with the expression of ER-alpha in breast cancer tissues. Thus, we examined the methylation of ER-alpha promoter in breast cancer cell lines MDA-MB-231/SUM-159 and MCF-7/ZR75-1, and functionally demonstrated the methylation regulation of ER-alpha promoter by ZEB1 overexpression and silencing. Treatment of breast cancer cells with tamoxifen and fulvestrant, a representative antiestrogen drug, demonstrated that ZEB1 overexpression could down-regulate the expression of ER-alpha in breast cancer cells and reduce the sensitivity of breast cancer cells to antiestrogen drugs; on the contrary, silencing ZEB1 expression could partially restore the expression of ER-alpha. Mechanisms have shown that ZEB1 can form protein complexes with methyltransferase DNMT3B and deacetylase HDAC1 on ER-a promoter simultaneously, which induces DNA hypermethylation, inhibits ER-a transcription and silences ER-a expression. More importantly, ZE is knocked down by RNA interference. After the expression of B1, the demethylation of ER-alpha promoter was induced, and the expression of ER-alpha was partly restored, which increased the sensitivity of breast cancer to anti-estrogen therapy. Promoter hypermethylation was positively correlated with ER-alpha in ER-alpha-positive cases, but the opposite was true in ER-alpha-positive cases. In a mouse transplanted tumor model, we further demonstrated that down-regulation of ZEB1 partially restored the expression of ER-alpha and increased the sensitivity of breast cancer to anti-estrogen therapy. ZeB1 and its downstream signaling pathways may be new targets for breast cancer treatment. Targeting ZEB1 and combining with specific inhibitors of epigenetic regulation may be a new strategy to overcome the resistance of breast cancer to estrogen therapy. Vascular endothelial growth factor (VEGF) signaling pathway plays a key role in tumor angiogenesis. As an effective anti-angiogenesis drug, small molecule inhibitor targeting vascular endothelial growth factor receptor (VEGF R2) has been widely used in the clinical treatment of malignant tumors. Sorafenib and sunitinib are small molecule drugs for the treatment of advanced renal cell carcinoma. Although ideal results have been obtained in preclinical studies and initial clinical trials, with the gradual application of these drugs in clinic, some unknown side effects have been found in most of them, and their efficacy needs to be further verified. Therefore, the development of novel and low toxic small molecule inhibitors of VEGFR2 is still a hot research topic. In this project, we first used sorafenib as the main structure of the drug, using computer-aided design, biochemical synthesis methods, to obtain 25 novel small molecule inhibitors targeting VEGFR2. Then, sorafenib as a positive control, the use of. After screening the anti-angiogenesis effects of these compounds in transgenic zebrafish (Fli-1:EGFP) model, a high-efficiency and low-toxicity small molecule inhibitor of VEGFR2, YLL545, was obtained. Next, we treated HUVECs of human umbilical vein endothelial cells with different concentrations of YLL545 and sorafenib as positive control. The IC50 of YLL545 inhibited the proliferation of HUVECs was 5.844 mu M. Further studies using Ed U cell proliferation assay showed that YLL545 inhibited the proliferation of HUVECs by reducing S-phase DNA synthesis. In addition, scratch and Transwell experiments suggested that YLL545 could inhibit the migration and invasion of HUVECs cells. In addition, we need to clarify the molecular mechanism of YLL545 inhibiting angiogenesis. WB assay showed that YLL545 significantly inhibited the phosphorylation of VEGFR2 induced by VEGF, and YLL545 significantly inhibited the angiogenesis of HUVECs. Protein phosphorylation levels of downstream signal regulators, including extracellular regulated protein kinase ERK, signal transducer and activator of transcription STAT3 and rapamycin target protein M TOR, were measured. In addition, using RT2 Profiler PCR Array, we also found that YLL545 could inhibit the expression of other angiogenesis-related genes through the non-dependent pathway of VEGFR2. Because breast cancer cells also express VEGFR2, m TOR, STAT3 and ERK, YLL545 has the potential to target tumor cells. Therefore, we chose breast cancer cell MDA-MB-231 for our study. CCK8, Ed U and platelet cloning experiments have all proved that 2.5 mu YLL545 is effective. YLL545 could also promote the apoptosis of MDA-MB-231 cells. The IC50 of YLL545 inhibited the proliferation of normal mammary epithelial cells and hepatic epithelial cells were 35.83 and 33.40 mu M, respectively, indicating that YLL545 had little toxicity to normal tissue cells, and its specific inhibitory effect on tumor was not related to cytotoxicity. Finally, we validated the inhibitory effect of YLL545 on angiogenesis in vivo in mice transplanted tumor model. The results showed that oral administration of YLL545 50 mg/kg/d could inhibit angiogenesis of breast cancer transplanted tumor, and then inhibit tumor growth, the inhibitory rate was 50%. Moreover, compared with the control group, YLL545 experimental group mice did not show any toxic and side effects. YLL545, as a novel, safe and effective angiogenesis inhibitor, is expected to be used in the treatment of cancer, especially breast cancer.
【學位授予單位】:重慶醫(yī)科大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:R737.9
【相似文獻】
相關期刊論文 前10條
1 黃嘯原;用“印度閱兵”形容乳腺癌合適嗎?[J];診斷病理學雜志;2001年02期
2 張嘉慶,王殊,喬新民;乳腺癌的現(xiàn)狀和遠景[J];中華外科雜志;2002年03期
3 張維彬,汪波,石靈春;中醫(yī)藥在現(xiàn)代乳腺癌治療中的運用[J];中國中西醫(yī)結合急救雜志;2002年01期
4 薛志勇;食物與乳腺癌[J];山東食品科技;2002年04期
5 王旬果,王建軍,鄭國華;乳腺癌相關標志物的研究進展[J];山東醫(yī)藥;2002年33期
6 陸尚聞;;男人也患乳腺癌[J];環(huán)境;2003年12期
7 ;新技術清晰拍攝早期乳腺癌細胞[J];上海生物醫(yī)學工程;2005年04期
8 田富國;郭向陽;張華一;;乳腺癌診治研究新進展[J];腫瘤研究與臨床;2005年S1期
9 馬濤,谷俊朝;血管內皮生長因子與乳腺癌的臨床研究進展[J];國外醫(yī)學(外科學分冊);2005年01期
10 郭慶良,谷俊朝;乳腺癌和瘦素相關性研究進展[J];國外醫(yī)學.外科學分冊;2005年03期
相關會議論文 前10條
1 于永利;;抗乳腺癌免疫治療融合蛋白[A];中國免疫學會第四屆學術大會會議議程及論文摘要集[C];2002年
2 郭紅飛;;中醫(yī)治療乳腺癌的策略[A];江西省中醫(yī)、中西醫(yī)結合腫瘤學術交流會論文集[C];2012年
3 龐朋沙;伍會健;;乳腺癌治療靶標的研究進展[A];北方遺傳資源的保護與利用研討會論文匯編[C];2010年
4 陸勁松;邵志敏;吳炅;韓企夏;沈鎮(zhèn)宙;;新型維甲酸抑制乳腺癌細胞的生長及誘導凋亡的機制研究[A];2000全國腫瘤學術大會論文集[C];2000年
5 劉愛國;胡冰;;乳腺癌臨床治療進展[A];安徽省抗癌協(xié)會第四次代表大會暨乳腺癌、肺癌專業(yè)委員會成立會議、安徽省腫瘤防治進展學術研討會論文匯編[C];2001年
6 張嘉慶;王殊;喬新民;;乳腺癌的現(xiàn)狀和遠景[A];第一屆全國中西醫(yī)結合乳腺疾病學術會議論文匯編[C];2002年
7 劉清俊;;乳腺癌綜合治療的新進展[A];山西省抗癌協(xié)會第六屆腫瘤學術交流會論文匯編[C];2003年
8 邵志敏;;21世紀乳腺癌治療的展望[A];第三屆中國腫瘤學術大會教育論文集[C];2004年
9 陳松旺;張明;;乳腺癌治療的回顧與展望[A];西部地區(qū)腫瘤學學術會議論文匯編[C];2004年
10 白霞;傅建新;丁凱陽;王兆鉞;阮長耿;;組織因子途徑抑制物-2在乳腺癌細胞中的表達研究[A];第10屆全國實驗血液學會議論文摘要匯編[C];2005年
相關重要報紙文章 前10條
1 ;血檢有望揭示乳腺癌治療效果[N];醫(yī)藥經濟報;2004年
2 記者 鄭曉春;乳腺癌細胞擴散基因被找到[N];科技日報;2007年
3 中國軍事醫(yī)學科學院腫瘤中心主任 宋三泰;乳腺癌有了新療法[N];中國婦女報;2002年
4 王艷紅;抑制DNA修補可消滅乳腺癌細胞[N];醫(yī)藥經濟報;2005年
5 詹建;乳腺癌飲食 兩個時期不一樣[N];中國中醫(yī)藥報;2006年
6 辛君;乳腺癌擴散基因“浮出水面”[N];大眾衛(wèi)生報;2009年
7 記者 毛黎;美發(fā)現(xiàn)有效抑制乳腺癌細胞生長的分子[N];科技日報;2010年
8 記者 吳春燕 通訊員 王麗霞;乳腺癌治療將有新途徑[N];光明日報;2011年
9 王樂 沈基飛;我科學家發(fā)現(xiàn)導致乳腺癌耐藥的新標志物[N];科技日報;2011年
10 劉霞;一種天然分子能阻止乳腺癌惡化[N];科技日報;2011年
相關博士學位論文 前10條
1 柴紅燕;疾病狀態(tài)下CYP4Z1和4A的生物學行為及其藥物干預研究[D];武漢大學;2012年
2 李凱;ID(inhibitor of DNA binding)家族蛋白調控乳腺細胞的分化并影響乳腺癌的預后[D];復旦大學;2014年
3 江一舟;乳腺癌新輔助化療前后基因變異檢測及其功能論證[D];復旦大學;2014年
4 馬邵;酪氨酸去磷酸化增強表皮生長因子受體在乳腺癌治療中靶向性的研究[D];山東大學;2015年
5 姚若斯;精氨酸甲基轉移酶PRMT7誘導乳腺癌細胞發(fā)生表皮—間質轉換及轉移的作用機制研究[D];東北師范大學;2015年
6 侯培鋒;α-酮戊二酸二甲酯(DM-2KG)上調缺氧誘導因子-1α(HIF-1α)誘發(fā)高致瘤性干細胞樣乳腺癌細胞機制研究[D];福建醫(yī)科大學;2014年
7 李麗麗;分泌蛋白SHON調控乳腺癌細胞EMT的分子機制研究[D];東北師范大學;2015年
8 陳麗艷;PI3K抑制劑聯(lián)合組蛋白去乙酰化酶抑制劑對乳腺癌協(xié)同殺傷作用的分子機制研究[D];延邊大學;2015年
9 樸俊杰;乳腺癌差異基因篩選及PAIP1對其生物學行為的影響[D];延邊大學;2015年
10 汪[?如;染色體6q25.1區(qū)域基因多態(tài)性與乳腺癌遺傳易感性的關聯(lián)研究[D];南方醫(yī)科大學;2015年
相關碩士學位論文 前10條
1 杜文英;乳腺癌分子亞型的臨床與病理特點[D];鄭州大學;2011年
2 賈曉菲;彩色多普勒超聲與乳腺癌病理及免疫組化指標的相關性研究[D];內蒙古大學;2015年
3 靳文;乳腺癌全基因組DNA甲基化修飾的研究[D];內蒙古大學;2015年
4 吳坤琳;TLR4/MyD88信號通路對乳腺癌侵襲性影響的實驗研究[D];福建醫(yī)科大學;2015年
5 葛廣哲;樹,
本文編號:2182979
本文鏈接:http://sikaile.net/yixuelunwen/zlx/2182979.html