可選擇性捕獲循環(huán)腫瘤細(xì)胞的三維聚合物軟鏈的初步探索
[Abstract]:Malignant tumor is a serious disease. About 8 million 200 thousand people die of cancer every year. The gold standard in the field of cancer detection is "biopsy", and the detection of circulating tumor cells (CTC) can be used as a "liquid biopsy" part to replace the traditional method to achieve non-invasive and rapid detection of cancer. However, CTC is in the blood. There are few 1~100 in about 1 billion blood cells, so the capture and enrichment of CTC is very challenging. Many methods have emerged in the field of CTC enrichment and detection. Research has shown that nanostructures help to improve the detection of CTC. And compared to inorganic nanomaterials, the flexible organic nanostructures are to CTC Therefore, based on the previous experience, in order to further improve the capture efficiency, we have prepared a three dimensional polymer soft chain platform with the potential to capture CTC. In order to realize the preparation of the three-dimensional soft chain platform with high efficiency to capture CTC, this topic first uses electrochemistry to induce the surface of the free radical polymerization of atomic transfer. The ATRP initiator and molecular polymerization with anti non specific adhesion ability are deposited on the surface of the conductive medium, and then the three-dimensional molecular soft chain with the ability of biofunctionalization and anti non specific adhesion is prepared by the method of surface initiation ATRP. The capture platform obtained by this method has good anti non specificity. Adhesion ability can control the ultimate capture ability by controlling the molecular chain density, molecular chain length and the component of biotin functionalized monomers. In theory, it has the potential of controllable high efficiency and specificity to capture CTC. The specific realization method of the capture platform is as follows. This subject uses bromo isobutylyl bromide and hydroxylated 3,4- ethylene two oxygen thiophene (e Dot-oh) occurrence of elimination reaction, synthesis of two oxygen thiophene (EDOT) derivative (edot-br) containing the ability of surface induced ATRP, and the chemical structure of the ATRP initiator on this surface was determined by NMR spectroscopy. In this study, a monomer with the ability to resist nonspecific adhesion (EDOT derivatives containing phosphoric acid choline) was synthesized by the two step method. Biological). The first step is to produce edot-cop by the elimination reaction between edot-oh and 2- chloro -2- oxygen -1,3,2- two oxycyclopentane (COP); the second step using the open ring addition reaction of edot-cop and trimethylamine, and finally obtaining edot-pc. through nuclear magnetic resonance spectroscopy to analyze edot-pc, determine the chemical structure of the molecule, and prove it is excellent. By adding lithium perchlorate as doping ion in acetonitrile, adding sodium succinate two octyl sulfonate (DSS) to promote the solubility of edot-pc, the stable copolymerization of edot-br and edot-pc was finally deposited on the conductive substrate, and the characterization of the co deposition film was characterized by X ray photoelectron spectroscopy (XPS). The subject has successfully copolymerized the edot-br and edot-pc onto the conductive substrate and can control the density of the initiator on the conductive substrate by adjusting the content of edot-br in the solution. Through the atomic force microscope, the polymer film with low surface roughness can be obtained by cyclic voltammetry. Through the contact angle table, the surface of the polymer film can be obtained by the electrochemical polymerization of the cyclic voltammetry. It is proved that the hydrophilicity of the polymer membrane can be well controlled by adjusting the content of edot-pc in the polymer. Two kinds of biotin functionalized monomers M-Biotin and Hema-Biotin are synthesized, and on this basis, the ATRP copolymerization of M-Biotin/ Hema-Biotin and MPC is explored by the surface of the conductive polymer. On the surface of ATRP copolymerization, three different catalyst systems are tried: one is CuBr/ bipyridine (bpy), one is CuBr2/bpy/ ascorbic acid (VC), and the other is CuBr2/ three (2- pyridyl) amine (TPMA) /VC. (TPMA) /VC. finally through QCM to characterize the coupling effect of molecular chain with streptomycin and model protein, and determines the CuBr2/TPMA/VC On the surface of this system, it has the best effect in ATRP polymerization. In addition, the molecular chain generated under this system also has excellent anti non specific adhesion ability. This ability is the prerequisite to further optimize the ability of molecular chain capture. In order to maximize the expression of antibody on the molecular chain, the subject further optimizes the density of the initiator. The composition and polymerization time (chain length) of a functionalized copolymerized monomer. The coupling ability of molecular chains to streptavidin was characterized by QCM, and the maximum of the molecular chain to the chain of streptomycin and model protein could be found under the condition that the density of the initiator was 10%, the content of the biotin functionalized monomers was 5%, and the polymerization time of ATRP was 6h. With the increase of the polymerization time, it is found that the hydrophilicity of the ATRP polymerized molecular brush increases slightly with the increase of the polymerization time. It will stabilize at about 10 degrees after the 6h, which proves that the system has a good hydrophilic property.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:R730.4;O631
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 華曼,陳明清,劉曉亞,楊成;ATRP法制備兩親性嵌段共聚物的研究[J];高分子學(xué)報(bào);2004年05期
2 劉春華;范保林;劉榛;;原子轉(zhuǎn)移自由基聚合(ATRP)在二氧化硅表面接枝中的應(yīng)用[J];高分子通報(bào);2009年04期
3 南江琨;劉郁楊;鐘瑤冰;;ATRP法制備水凝膠的研究進(jìn)展[J];材料導(dǎo)報(bào);2011年05期
4 岳玲,張曉宏,吳世康;一種在ATRP反應(yīng)體系中常用引發(fā)組分——1-溴乙基苯的熒光光譜研究[J];高分子學(xué)報(bào);2005年01期
5 蘇輝輝;肖舒;戴林;何靜;;ATRP法合成甲基丙烯酸羥丙酯[J];化學(xué)試劑;2012年09期
6 劉軍東;劉郁楊;蔡勇;王海波;;ATRP與其他反應(yīng)技術(shù)聯(lián)用合成聚合物分子刷的研究進(jìn)展[J];應(yīng)用化工;2013年02期
7 李洋;李海英;遲繼波;雷良才;;功能性甲基丙烯酸甲酯-甲基丙烯酸縮水甘油酯嵌段聚合物ATRP合成[J];應(yīng)用化工;2013年02期
8 黃文艷;龔海丹;楊宏軍;潘會立;蔣必彪;;ATRP合成線性苯乙烯-丙烯腈共聚物[J];塑料工業(yè);2008年10期
9 周冰;劉子利;;氫氧根對苯乙烯和甲基丙烯酸甲酯ATRP懸浮共聚的影響[J];高分子通報(bào);2008年06期
10 張磊;王春鳳;陳奉嬌;杜施鑫;周國偉;;電子轉(zhuǎn)移活化再生催化劑原子轉(zhuǎn)移自由基聚合(ARGET ATRP)的研究進(jìn)展[J];化工新型材料;2012年07期
相關(guān)會議論文 前10條
1 王瑩;于文志;楊柏;;液相ATRP法直接合成兩親性嵌段共聚物[A];2005年全國高分子學(xué)術(shù)論文報(bào)告會論文摘要集[C];2005年
2 吳極文;湯慧;武培怡;;扇形ATRP引發(fā)劑3,4,5-三(十二烷氧基)芐溴的合成[A];2009年全國高分子學(xué)術(shù)論文報(bào)告會論文摘要集(下冊)[C];2009年
3 門永軍;王樂莉;劉正平;;在分子尺度利用ATRP法制備玉米淀粉接枝聚甲基丙烯酸甲酯[A];2011年全國高分子學(xué)術(shù)論文報(bào)告會論文摘要集[C];2011年
4 柏良久;張麗芬;程振平;朱秀林;;堿存在下的鐵鹽催化AGET ATRP反應(yīng)機(jī)理和動(dòng)力學(xué)研究[A];2011年全國高分子學(xué)術(shù)論文報(bào)告會論文摘要集[C];2011年
5 張麗芬;程振平;;一種高效的鐵鹽催化的苯乙烯AGET ATRP[A];蘇州市自然科學(xué)優(yōu)秀學(xué)術(shù)論文匯編(2008-2009)[C];2010年
6 趙劍英;邱雪鵬;高連勛;;通過表面原子轉(zhuǎn)移自由基聚合(ATRP)鍵合片基的方法[A];第三屆全國微全分析系統(tǒng)學(xué)術(shù)會議論文集[C];2005年
7 李潔華;陽煈;譚東升;周立娟;傅強(qiáng);譚鴻;;聚酯表面ATRP接枝聚乙二醇刷對蛋白吸附影響的研究[A];2009年全國高分子學(xué)術(shù)論文報(bào)告會論文摘要集(下冊)[C];2009年
8 高龍成;易毅;潘其維;范星河;陳小芳;宛新華;周其鳳;;基于乙烯基對苯二甲酸的單體的ATRP研究[A];2005年全國高分子學(xué)術(shù)論文報(bào)告會論文摘要集[C];2005年
9 徐文健;朱秀林;朱健;;側(cè)鏈、端基含孕烷結(jié)構(gòu)的聚合物的ATRP法合成及其表征[A];2005年全國高分子學(xué)術(shù)論文報(bào)告會論文摘要集[C];2005年
10 彭錦雯;;硅表面引發(fā)ATRP接枝親水性聚合物刷的動(dòng)力學(xué)研究[A];2007年全國高分子學(xué)術(shù)論文報(bào)告會論文摘要集(下冊)[C];2007年
相關(guān)博士學(xué)位論文 前10條
1 蔣紅娟;高效LRP體系的構(gòu)建及大分子精密合成[D];蘇州大學(xué);2015年
2 李時(shí)偉;基于ATRP法的含氟丙烯酸酯對真絲和棉織物改性研究[D];蘇州大學(xué);2015年
3 張洪文;ATRP方法合成幾種新型功能化聚合物的研究[D];吉林大學(xué);2004年
4 劉嘯天;酶促與ATRP方法結(jié)合制備新型功能聚合物的研究[D];吉林大學(xué);2007年
5 龔行;ATRP法制備含大垂飾基的螺旋聚甲基丙烯酸酯的研究[D];湘潭大學(xué);2011年
6 廖祿生;采用ATRP合成結(jié)構(gòu)可控的天然橡膠接枝共聚物[D];海南大學(xué);2013年
7 邢鐵玲;水介質(zhì)中丙烯酸酯系單體ATRP法接枝真絲的研究[D];蘇州大學(xué);2009年
8 彭錦雯;原子轉(zhuǎn)移自由基聚合(ATRP)在多功能硅(100)表面改性材料制備中的應(yīng)用[D];復(fù)旦大學(xué);2005年
9 朱韻;基于ATRP法不同陽離子聚合物基因載體的構(gòu)建及其性能研究[D];北京化工大學(xué);2014年
10 李娜君;含偶氮苯基團(tuán)的丙烯酸酯類單體的ATRP及其電光學(xué)性能研究[D];蘇州大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 丁明強(qiáng);液/液兩相催化體系在AIRP過渡金屬催化劑分離與回收中的應(yīng)用[D];蘇州大學(xué);2015年
2 杜向陽;基于溫敏性離子液體溫控相分離催化AGET ATRP體系的構(gòu)建[D];蘇州大學(xué);2015年
3 丁韶蘭;高容量離子交換材料的制備及其性能研究[D];寧夏大學(xué);2015年
4 莊志良;纖維素基材表面的ARGET ATRP接枝共聚改性研究[D];南京林業(yè)大學(xué);2015年
5 劉露;ATRP法制備離子交換膜應(yīng)用于擴(kuò)散滲析和電滲析[D];合肥工業(yè)大學(xué);2015年
6 杜凱迪;離子液體中ATRP法制備MCC-g-PDEAEMA的工藝研究[D];河北科技大學(xué);2015年
7 程浩南;基于ATRP的纖維素纖維織物抗皺整理方法的適應(yīng)性研究[D];西安工程大學(xué);2015年
8 王倩云;AEO系溫控配體在反相乳液丙烯酰胺R-ATRP反應(yīng)中的研究[D];大連工業(yè)大學(xué);2014年
9 潘齊超;可選擇性捕獲循環(huán)腫瘤細(xì)胞的三維聚合物軟鏈的初步探索[D];東華大學(xué);2016年
10 唐凡;天然高分子基體的ATRP法表面改性[D];蘇州大學(xué);2009年
,本文編號:2162398
本文鏈接:http://sikaile.net/yixuelunwen/zlx/2162398.html