基于Retinex理論的X射線醫(yī)學(xué)圖像算法的改進(jìn)與應(yīng)用
[Abstract]:X-ray has been widely used in medical imaging since Roentgen discovered it in 1895. The application of X-ray has promoted the development of medicine. In recent years, with the help of computer, people can synthesize three-dimensional images from different angles of X-ray images, and many diagnostic and therapeutic methods have emerged, which have entered the stage of digitization, tomography and 3D simulation reconstruction. Subsequently, a variety of medical image processing technology has also been rapid development. However, due to the very complex tissue and structure of the human body, coupled with the adverse effects of the system, equipment and environment on the X-ray, the quality of the medical image will eventually decline. This is mainly reflected in the blurring of the edge details and the poor contrast. Sometimes there is obvious noise that greatly affects the doctor's diagnosis and treatment of the disease. Therefore, in addition to the traditional digital image processing techniques, such as histogram processing, spatial and frequency domain filtering, we should also try new and improved methods. Retinex theory is one of them. Its advantages are that it can effectively compress the dynamic range of the image, enhance the edge details of the image, enhance the brightness of the image, improve the contrast of the image, and improve the visual effect of the image. It is very suitable for medical image with fuzzy details, low contrast, low resolution and poor visual effect. Therefore, according to the characteristics of X-ray medical images, a compound LRA (Logsig cumulative Reintex Algorithm) algorithm based on Retinex theory is proposed in this paper. The main work is as follows: firstly, the traditional image enhancement methods are analyzed and their characteristics are studied. Secondly, the noise model is constructed, and the latest image de-noising method is applied to de-noising the X-ray medical image. Finally, the Retinex theory is analyzed and studied, and the algorithms of each stage of the development of Retinex are realized. The logarithmic S-shape LogSig transfer function in neural network is used to replace the logarithmic function in the original multi-scale Retinex, and the image is compressed in dynamic range. On this basis, a composite LRA (LogSig cumulative Retinex Algorithm) algorithm is proposed. By comparing with the original algorithm, the shortcomings of the original Retinex algorithm for X-ray medical image application are found, and the advantages of this algorithm for X-ray medical image enhancement are explained.
【學(xué)位授予單位】:首都師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:R81;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王昱,胡莘,張保明;數(shù)字影像質(zhì)量評價方法研究[J];測繪通報;2002年05期
2 胡韋偉;汪榮貴;方帥;胡瓊;;基于雙邊濾波的Retinex圖像增強(qiáng)算法[J];工程圖學(xué)學(xué)報;2010年02期
3 馮安;王希常;;MATLAB在數(shù)字圖像增強(qiáng)中的應(yīng)用[J];信息技術(shù);2007年05期
4 徐力平;蔡艷艷;;基于CLAHE的塵肺X線胸片增強(qiáng)技術(shù)[J];計算機(jī)應(yīng)用;2007年S1期
5 劉茜;盧心紅;李象霖;;基于多尺度Retinex的自適應(yīng)圖像增強(qiáng)方法[J];計算機(jī)應(yīng)用;2009年08期
6 王小明;黃昶;李全彬;劉錦高;;改進(jìn)的多尺度Retinex圖像增強(qiáng)算法[J];計算機(jī)應(yīng)用;2010年08期
7 沈豐;趙宇明;;基于實(shí)時Retinex與雙邊濾波的圖像增強(qiáng)算法[J];計算機(jī)應(yīng)用與軟件;2009年11期
8 段竹;;醫(yī)學(xué)圖像增強(qiáng)算法研究[J];科學(xué)技術(shù)與工程;2009年03期
9 趙艷飛;高清維;盧一相;;基于多尺度Retinex算法的遙感圖像增強(qiáng)[J];計算機(jī)技術(shù)與發(fā)展;2008年02期
10 劉輝;趙文杰;吳畏;;改進(jìn)的多尺度Retinex紅外圖像增強(qiáng)算法[J];計算機(jī)技術(shù)與發(fā)展;2011年04期
相關(guān)博士學(xué)位論文 前1條
1 王彥臣;基于多尺度數(shù)字X光圖像增強(qiáng)方法的研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2005年
相關(guān)碩士學(xué)位論文 前7條
1 付國文;基于Retinex的圖像增強(qiáng)算法研究及實(shí)現(xiàn)[D];上海交通大學(xué);2011年
2 洪明堅(jiān);圖像增強(qiáng)的自適應(yīng)直方圖修正算法研究及其應(yīng)用[D];重慶大學(xué);2002年
3 陳霧;基于Retinex理論的圖像增強(qiáng)算法研究[D];南京理工大學(xué);2006年
4 肖燕峰;基于Retinex理論的圖像增強(qiáng)恢復(fù)算法研究[D];上海交通大學(xué);2007年
5 許可;醫(yī)學(xué)圖像增強(qiáng)處理與分析[D];吉林大學(xué);2008年
6 侯長治;基于Retinex理論的手部紅外熱像圖的增強(qiáng)處理研究[D];河北工業(yè)大學(xué);2007年
7 任斌;基于Retinex圖像增強(qiáng)算法研究與實(shí)現(xiàn)[D];南京理工大學(xué);2009年
,本文編號:2265181
本文鏈接:http://sikaile.net/yixuelunwen/yundongyixue/2265181.html