基于CT影像的肺氣管道骨架化的研究
發(fā)布時(shí)間:2018-06-06 23:10
本文選題:肺氣管道 + 細(xì)化; 參考:《東北大學(xué)》2012年碩士論文
【摘要】:在全球范圍內(nèi),呼吸系統(tǒng)疾病是一類(lèi)重要的非傳染性流行疾病。多探測(cè)器計(jì)算機(jī)斷層成像(MDCT)是一種有效的、非創(chuàng)傷性氣道疾病研究和評(píng)價(jià)手段。但由于缺乏氣管結(jié)構(gòu)分析方法研究,在揭示疾病的本質(zhì)、特征和發(fā)生、發(fā)展規(guī)律時(shí)仍面臨挑戰(zhàn)。在此背景下,計(jì)算機(jī)輔助診斷(computer aided diagnosis, CAD)的研究蓬勃發(fā)展起來(lái)。肺氣管道的自動(dòng)分割與骨架化以及對(duì)肺氣管相關(guān)疾病的自動(dòng)診斷系統(tǒng)是當(dāng)前CAD系統(tǒng)的一個(gè)重要分支。 本課題的目的是提出并實(shí)現(xiàn)一種自動(dòng)的氣管骨架化算法,從而提取氣道中心線(xiàn),生成氣管樹(shù)狀結(jié)構(gòu)圖,獲取氣管2D橫截面,為氣管結(jié)構(gòu)的定量化分析提供方法。 研究中的CT影像數(shù)據(jù)均來(lái)自于中國(guó)醫(yī)科大學(xué)附屬盛京醫(yī)院(中國(guó),沈陽(yáng)),飛利浦Brillance64CT系統(tǒng),重建矩陣512*512。基于由CT影像數(shù)據(jù)中提取的二值化氣道樹(shù),提出拓?fù)浼?xì)化算法,通過(guò)簡(jiǎn)單點(diǎn)判斷不斷從邊界上刪除多余體素,直至剩下單體素寬的骨架。再設(shè)定合適閾值,將骨架線(xiàn)上的細(xì)化“毛刺”剪除。從最終骨架中識(shí)別氣道根點(diǎn)、分叉點(diǎn)、線(xiàn)端點(diǎn)和線(xiàn)上點(diǎn),利用二叉樹(shù)拓?fù)浣Y(jié)構(gòu)建立氣管樹(shù)狀結(jié)構(gòu)圖,實(shí)現(xiàn)氣道級(jí)數(shù)標(biāo)記。同時(shí)利用提取的氣道根點(diǎn)、分叉點(diǎn)和線(xiàn)端點(diǎn)建立簡(jiǎn)化的樹(shù)狀模型。最后,利用三次B樣條曲線(xiàn)對(duì)氣道中心線(xiàn)平滑后,計(jì)算中心線(xiàn)切向量(即氣道橫截面法向量),從而通過(guò)坐標(biāo)變換獲取2D橫斷面圖像數(shù)據(jù),為將來(lái)氣管直徑測(cè)量和氣管壁厚度分析打下基礎(chǔ)。 本課題提出的算法能成功提取10組數(shù)據(jù)中的氣道骨架,剪枝閾值設(shè)置為15較為合適。獲得的支氣管樹(shù)結(jié)構(gòu)圖和簡(jiǎn)化樹(shù)狀模型可實(shí)現(xiàn)自動(dòng)命名,最高可標(biāo)記至12級(jí)支氣管,總支氣管分支數(shù)量最多可達(dá)174個(gè)。最后,快速準(zhǔn)確提取各級(jí)支氣管的2D橫斷面圖像數(shù)據(jù)。 綜上所述,本課題提出的自動(dòng)氣管骨架化算法可以用于氣管的定量化結(jié)構(gòu)分析,為揭示氣道疾病的本質(zhì)、特征和發(fā)生、發(fā)展規(guī)律提供幫助。
[Abstract]:Globally, respiratory diseases are an important class of non-communicable endemic diseases. Multi-detector computed tomography (MDCT) is an effective and non-traumatic method for the study and evaluation of airway diseases. However, due to the lack of tracheal structure analysis method, it is still facing challenges in revealing the nature, characteristics, occurrence and development of the disease. Under this background, the research of computer aided diagnosis (aided diagnosis, CAD) is booming. The automatic segmentation and skeleton of the pulmonary duct and the automatic diagnosis system for the diseases related to the pulmonary duct are an important branch of the current CAD system. The purpose of this paper is to propose and implement an automatic trachea skeleton algorithm, so as to extract the central line of the airway, generate the trachea tree structure diagram, obtain the trachea 2D cross section, and provide a method for the quantitative analysis of the trachea structure. The CT image data in the study were obtained from Shengjing Hospital affiliated to China Medical University (Shenyang, China, Philips Brillance64CT system, reconstruction matrix 512 / 512). Based on the binary airway tree extracted from CT image data, a topological thinning algorithm is proposed. The redundant voxels are continuously deleted from the boundary by simple point judgment until the skeleton with a single element width is left. Then set the appropriate threshold, the skeleton line on the fine "burr" cut off. The airway root points, bifurcation points, line endpoints and line points are identified from the final skeleton, and the trachea tree structure diagram is established by using the binary tree topology to mark the airway series. At the same time, a simplified tree model is established using the extracted airway root points, bifurcation points and line endpoints. Finally, after the cubic B-spline curve is used to smooth the central line of the airway, the tangent vector of the center line (i.e. the normal vector of the airway cross-section) is calculated, and the 2D cross-sectional image data are obtained by coordinate transformation. It will lay a foundation for the measurement of trachea diameter and the analysis of the wall thickness of trachea in the future. The proposed algorithm can extract the airway skeleton from 10 groups of data successfully and set the pruning threshold to 15. The obtained bronchotree structure diagram and simplified tree model can be automatically named. The highest number of bronchi can be labeled to grade 12, and the number of branches of the total bronchus can be up to 174. Finally, 2D cross-sectional image data of all levels of bronchus were extracted quickly and accurately. To sum up, the automatic trachea skeleton algorithm proposed in this paper can be used to analyze the quantitative structure of trachea, which can help to reveal the nature, characteristics, occurrence and development of airway diseases.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類(lèi)號(hào)】:R816.41;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 竺海;姬紅兵;高新波;;基于邊界距離場(chǎng)的管腔中心路徑自動(dòng)提取算法[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2006年06期
,本文編號(hào):1988497
本文鏈接:http://sikaile.net/yixuelunwen/yundongyixue/1988497.html
最近更新
教材專(zhuān)著