基于CT圖像的肝臟血管樹三維拓?fù)淠P偷臉?gòu)建及應(yīng)用
發(fā)布時間:2018-04-21 00:43
本文選題:肝臟血管系統(tǒng) + 細(xì)化。 參考:《重慶大學(xué)》2013年碩士論文
【摘要】:對肝臟影像進(jìn)行三維重建,建立數(shù)字化的肝臟模型能夠彌補(bǔ)二維影像評估的不足。結(jié)構(gòu)化的血管描述了血管的解剖位置和級數(shù),也體現(xiàn)了供血關(guān)系。 形態(tài)學(xué)里的對象的中心線,是一種經(jīng)過降維的物體形態(tài)的描述方式,不但把對象的輪廓和區(qū)域信息進(jìn)行了組合,反映出對象重要的視覺上的線索;并且在將中心線的線形連通結(jié)構(gòu)轉(zhuǎn)化為樹或圖的抽象形式后,可以對對象進(jìn)行特征匹配,因而基于中心線的目標(biāo)表示和識別技術(shù)成為模式識別和計算機(jī)視覺的重要研究內(nèi)容。該領(lǐng)域的核心技術(shù)是中心線提取技術(shù)和基于中心線的目標(biāo)表示技術(shù)。對于前者,已有大量的中心線提取算法被提出,而目前對于后者的研究還很有限,因為直接從中心線圖像中提取目標(biāo)對象的結(jié)構(gòu)特征是困難和低效的。 本文提出了一種血管樹拓?fù)浣Y(jié)構(gòu)的圖表示方法。首先通過模板匹配對提取出的肝臟血管樹進(jìn)行細(xì)化和單體素化,通過分析體素點的鄰接關(guān)系對分叉點進(jìn)行標(biāo)記,提出了一種基于三維連通域標(biāo)記的廣度優(yōu)先搜索算法來去除環(huán),并利用三維圖像中血管的管徑和長度信息進(jìn)行剪枝,提取出符合肝臟血管樹實際情況的中心線。然后在此基礎(chǔ)上遍歷該中心線,同時構(gòu)造多叉樹,得到血管樹拓?fù)浣Y(jié)構(gòu)的圖表示。統(tǒng)計結(jié)果表明,該方法提取得到的肝臟血管樹中心線連通性較好,精確性較高,能夠應(yīng)用到血管分級和分支血管的長度以及管徑的測量中去。經(jīng)過多次實驗,利用字典樹的數(shù)據(jù)結(jié)構(gòu)構(gòu)建的圖表示能夠很好的抽象表示血管樹。 肝臟門靜脈和肝靜脈的管徑作為肝病診斷的依據(jù),具有重要意義。本文利用血管樹的拓?fù)浣Y(jié)構(gòu)模型對血管樹中心線和血管樹進(jìn)行了劃分,然后采用精確的歐氏距離計算血管分支的長度和管徑。最后采用Strahler分級方法對血管樹進(jìn)行了分級,以滿足醫(yī)師在診斷時使用不同過濾參數(shù)的需要,分級的結(jié)果較好的反映了血管樹的層級關(guān)系。通過Bland-Altman分析,證明本文方法在計算血管的長度和管徑時有很高的精確性。 該方法在虛擬肝臟手術(shù)規(guī)劃系統(tǒng)中得到了很好的應(yīng)用,,可在此基礎(chǔ)上對肝臟進(jìn)行分段,輔助外科醫(yī)師制定手術(shù)預(yù)案。
[Abstract]:Three-dimensional reconstruction of liver image and establishment of a digital liver model can make up for the deficiency of two-dimensional image evaluation. Structured blood vessels describe the anatomical location and progression of blood vessels, as well as the relationship between blood supply. The central line of the object in morphology is a way of describing the shape of the object after dimensionality reduction. It not only combines the outline of the object with the regional information, but also reflects the important visual clues of the object. After transforming the linearly connected structure of the center line into the abstract form of tree or graph, the object feature matching can be carried out, so the target representation and recognition technology based on the center line has become an important research content of pattern recognition and computer vision. The core technologies in this field are centerline extraction and centerline based target representation. For the former, a large number of centerline extraction algorithms have been proposed, but the research on the latter is still very limited, because it is difficult and inefficient to extract the structural features of the target object directly from the centerline image. In this paper, a graph representation method of vascular tree topology is proposed. Firstly, the extracted hepatic vascular tree is refined and monomeric by template matching, and the bifurcation points are marked by analyzing the adjacency of voxel points, and a breadth-first search algorithm based on 3D connected domain markers is proposed to remove the ring. The information of diameter and length of blood vessel in 3D image is used to prune and extract the centerline which accords with the actual situation of hepatic vascular tree. Then the center line is traversed and the multi-tree is constructed and the graph representation of the topological structure of the vascular tree is obtained. The statistical results show that the proposed method has good connectivity and high accuracy, and can be applied to the classification of blood vessels and the measurement of the length and diameter of branch vessels. After many experiments, the graph representation constructed by the data structure of dictionary tree can represent vascular tree abstractly. The diameter of hepatic portal vein and hepatic vein is the basis for the diagnosis of liver disease. In this paper, the center line of vascular tree and vascular tree are divided by using the topological structure model of vascular tree, and the length and diameter of vascular branches are calculated by using accurate Euclidean distance. Finally, the vascular tree was classified by Strahler classification method to meet the needs of different filtering parameters used by doctors in diagnosis. The classification results reflected the hierarchical relationship of vascular tree. It is proved by Bland-Altman analysis that the proposed method is accurate in calculating the length and diameter of blood vessels. This method has been applied well in the virtual liver surgery planning system. On this basis, the liver can be segmented to assist the surgeon to make the operation plan.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TP391.41;R816.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 劉俊義,王潤生;基于骨架層次分解的目標(biāo)的圖表示[J];計算機(jī)學(xué)報;2001年06期
2 凡桂華;房斌;王翊;楊世忠;;肝臟三維管道系統(tǒng)提取方法[J];計算機(jī)系統(tǒng)應(yīng)用;2010年09期
本文編號:1780205
本文鏈接:http://sikaile.net/yixuelunwen/yundongyixue/1780205.html
最近更新
教材專著