BPDE誘導(dǎo)Swan 71滋養(yǎng)層細(xì)胞線粒體損傷的機(jī)制
[Abstract]:Benzo (a) ptyrene, B (a) P) is a known carcinogens, carcinogenic, mutagenic and endocrine disruptors, and a large number of studies show that B (a) P can induce trophoblast-related diseases such as eclampsia, intrauterine growth restriction, abortion, etc. However, the underlying mechanism is not yet clear. In this study, the change of cell and mitochondrial function and its specific molecular mechanism were observed by B (a) P metabolism in the body. The changes of cell and mitochondrial function and their specific molecular mechanism were observed in the trophoblast cell line Swan 71. To explore the role of mitochondrial damage in the functional disturbance of trophoblast cells and to provide a new idea for the treatment of trophoblast-related diseases. Methods 1. MTT assay was used to detect the effect of BPDE on the viability of Swan 71 cells, and the concentration and time of exposure were established according to the results. The invasion ability of all groups of cells was detected by Transwell's method, and the secretion ability of the cells was determined by ELISA and Western blot. The cell apoptosis was detected by flow cytometry. The contents of ROS, MDA and SOD in cells were detected by ELISA. The changes of the expression of TNF-CoV and IL-6 mRNA were detected by RT-qPCR. The changes of mitochondrial DNA number were observed by fluorescence microscope; the changes of mitochondrial morphology and structure were observed by transmission electron microscope; the change of mitochondrial DNA copy number was detected by real-time fluorescence quantitative PCR. RT-qPCR and Western blot were used to detect the expression of fusion genes and proteins (Mfn1, Mfn2, OPA1, Drp1, and CD1). Apoptosis-related proteins (P53, Bcl-2, Bk and Bax), Cyt c in mitochondria and cytoplasm, and Caspase3 precursor and activation products were detected by Western blot. Results 1. The effect of BPDE on the function of Swan 71 cells was 0. 1. mol/ L, 0.2. mol/ L, 0.4. mol/ L and 0.9. mol/ L, and the invasive ability of Swan 71 cells was decreased gradually, and the difference was statistically significant (P0.05). In 1. mol/ L and 2. m mol/ L group of Swan 71 cells, there was a statistically significant difference (P0.05). The BPDE could promote the apoptosis of Swan 71 cells and 0.5mumol/ L. Compared with the control group, the effect of BPDE on the oxidative damage of Swan 71 cells was 0. 25 ug/ L, 0.5. mol/ L, 1. m mol/ L and 2. m mol/ L, the levels of ROS and MDA increased gradually, and the level of SOD decreased gradually. The difference was statistically significant (P0.05). Compared with the control group, the expression of TNF-and IL-6 mRNA was up-regulated in 1. m u.mol/ L and 2. m mol/ L group, and the difference was statistically significant (P0.001). The effect of BPDE on the mitochondrial structure and function of Swan 71 cell decreased with the increase of BPDE concentration. Mitochondrial DNA was gradually decreased; transmission electron microscope observation, 0. 5 ug/ L group of mitochondrial swelling distortion, mitochondrial membrane disturbance, membrane fragmentation, reticulum swelling. 1. mu mol/ L group of mitochondria showed more serious vacuolization, rupture and dissolution, mitochondria were dissolved, and the Endoplasmic reticulum was in a bubble structure. Compared with the control group, the effect of BPDE on the apoptosis-related protein of Swan 71 cells increased with the increase of BPDE concentration, and the expression of P53, Bak1 and Bax increased gradually. The expression of Bcl-2 protein decreased gradually. Compared with the control group, the expression of OPA1, Mfn1 and Mfn2 in the mitochondrial fusion gene OPA1, Mfn1 and Mfn2 decreased gradually. The differences were statistically significant (P 0.05); 0. 5. m u.mol/ L, 1. m mol/ L and 2. m u.mol/ L, the expression of DS1 was gradually increased, and the expression of Drp1 in 1. m u.mol/ L and 2. m u.mol/ L groups was gradually increased, and the difference was statistically significant (P0.05). Compared with the control group, the expression of OPA1 in 0.5. mol/ L, 1. m mol/ L and 2. m mol/ L group decreased gradually, and the expression of Mfn1 and Mfn2 in each group was gradually decreased, and the difference was statistically significant (P0.05). The difference was statistically significant (P0.001). The effect of BPDE on the release of Cyt c and Caspase 3 in Swan 71 cells increased with the increase of BPDE concentration, the content of Cyt c protein in cytoplasm gradually increased, and the content of Cyt c protein in mitochondria gradually decreased, Caspase 3 precursor decreased gradually, and the activated Caspase 3 increased gradually. All the differences were statistically significant except for 0. 25 ug/ L group (P0.05). Conclusion BPDE can induce the increase of mitochondrial fragmentation caused by oxidative damage of Swan 71 cells, which causes mitochondrial membrane fragmentation to release Cyt c and induce apoptosis of mitochondrial pathway, which leads to the invasion of Swan 71 cells and the dysfunction of urinary tract secretion. provides experimental basis for the treatment of trophoblast related diseases caused by BPDE.
【學(xué)位授予單位】:鄭州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:R114
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 于春艷;李洪巖;康勁松;鐘加滕;孫連坤;;線粒體分裂融合基因在氧化應(yīng)激誘導(dǎo)宮頸癌Hela細(xì)胞損傷中的作用[J];中國婦幼保健;2009年33期
2 張子怡;張勇;;線粒體動(dòng)態(tài)變化與線粒體質(zhì)量控制:運(yùn)動(dòng)的適應(yīng)與調(diào)節(jié)[J];中國運(yùn)動(dòng)醫(yī)學(xué)雜志;2011年09期
3 張寧;王士雷;李淑虹;李瑜;王鵬;賈長新;;線粒體分裂蛋白抑制劑在大鼠腦缺血再灌注損傷中的作用及其機(jī)制(英文)[J];現(xiàn)代生物醫(yī)學(xué)進(jìn)展;2013年18期
4 楊軼;楊敏;;線粒體融合與分裂:治療缺血性心臟疾病的潛在靶點(diǎn)[J];今日藥學(xué);2012年12期
5 阿力木江·買買提江;高秀芳;金波;施海明;;線粒體動(dòng)力學(xué)與心肌細(xì)胞能量代謝的研究進(jìn)展[J];復(fù)旦學(xué)報(bào)(醫(yī)學(xué)版);2013年05期
6 郝希純;王東明;;Drp1蛋白調(diào)節(jié)線粒體分裂機(jī)制及其在疾病中的作用[J];廣東醫(yī)學(xué);2011年08期
7 賀文鳳;曹青;洪葵;;線粒體對iPSC再程序化的影響[J];基礎(chǔ)醫(yī)學(xué)與臨床;2013年03期
8 張倩;張宏偉;夏建華;連亞軍;謝南昌;;線粒體分裂蛋白抑制劑對癲癇大鼠海馬神經(jīng)元凋亡的影響[J];河南醫(yī)學(xué)研究;2014年02期
9 許美芬;何軼群;管敏鑫;;線粒體融合、分裂與神經(jīng)變性疾病[J];中國生物化學(xué)與分子生物學(xué)報(bào);2013年12期
10 韓小建;萬玉英;楊章堅(jiān);張劍鋒;危永芳;賴啟南;;利用蛋白導(dǎo)入法沉默線粒體分裂調(diào)節(jié)蛋白Drp1的表達(dá)[J];重慶醫(yī)科大學(xué)學(xué)報(bào);2014年05期
相關(guān)會議論文 前10條
1 楊軼;楊敏;;線粒體融合與分裂:治療缺血性心臟疾病的新靶點(diǎn)?[A];2011年中國藥學(xué)大會暨第11屆中國藥師周論文集[C];2011年
2 楊軼;劉居理;楊敏;;線粒體融合和分裂與心臟疾病[A];中國藥理學(xué)會第十一次全國學(xué)術(shù)會議?痆C];2011年
3 于瀅;王瑞元;;運(yùn)動(dòng)對不同組織線粒體動(dòng)力學(xué)的影響[A];2013年中國生理學(xué)會運(yùn)動(dòng)生理學(xué)專業(yè)委員會年會暨“運(yùn)動(dòng)與健康”學(xué)術(shù)研討會論文摘要匯編[C];2013年
4 于瀅;王瑞元;;運(yùn)動(dòng)對不同組織線粒體動(dòng)力學(xué)的影響[A];2013年中國生理學(xué)會運(yùn)動(dòng)生理學(xué)專業(yè)委員會年會暨“運(yùn)動(dòng)與健康”學(xué)術(shù)研討會論文摘要匯編[C];2013年
5 楊軼;楊敏;;線粒體融合與分裂:治療缺血性心臟疾病的潛在靶點(diǎn)~[A];2014年廣東省藥師周大會論文集[C];2014年
6 王雁玲;秦力;柏素霞;仇巍;莊臨之;;黏附分子和金屬蛋白酶系統(tǒng)與胚胎滋養(yǎng)層細(xì)胞的有節(jié)制侵入[A];中國細(xì)胞生物學(xué)學(xué)會醫(yī)學(xué)細(xì)胞生物學(xué)、免疫細(xì)胞生物學(xué)和發(fā)育生物學(xué)專業(yè)委員會學(xué)術(shù)研討會論文摘要匯編[C];2002年
7 陳芝蘭;呂美玲;莊國強(qiáng);汪海林;;對氧化損傷敏感的細(xì)菌傳感器的研究[A];中國化學(xué)會第27屆學(xué)術(shù)年會第02分會場摘要集[C];2010年
8 李蕓;羅云敬;王云海;鐘儒剛;;過亞硝酸根對DNA氧化損傷及其抑制作用研究[A];第二屆全國環(huán)境化學(xué)學(xué)術(shù)報(bào)告會論文集[C];2004年
9 陳穎麗;李前忠;;不同亞細(xì)胞位置的細(xì)胞凋亡蛋白質(zhì)的結(jié)構(gòu)特性分析[A];第十一次中國生物物理學(xué)術(shù)大會暨第九屆全國會員代表大會摘要集[C];2009年
10 孫英麗;趙允;朱山;翟中和;;植物細(xì)胞凋亡及其機(jī)理的研究[A];中國細(xì)胞生物學(xué)學(xué)會第七次會議論文摘要匯編[C];1999年
相關(guān)重要報(bào)紙文章 前10條
1 商東;“細(xì)胞凋亡”與臨床醫(yī)學(xué)[N];中國醫(yī)藥報(bào);2001年
2 張志軍;細(xì)胞凋亡與中醫(yī)藥[N];中國醫(yī)藥報(bào);2002年
3 ;“細(xì)胞凋亡療法”正逐步成為治療癌癥的新途徑[N];中國高新技術(shù)產(chǎn)業(yè)導(dǎo)報(bào);2002年
4 記者張建松;治療癌癥新途徑:細(xì)胞凋亡療法[N];科技日報(bào);2002年
5 李明輝;“細(xì)胞凋亡”治癌癥[N];醫(yī)藥導(dǎo)報(bào);2002年
6 洪敏;細(xì)胞凋亡研究引人關(guān)注[N];中國醫(yī)藥報(bào);2008年
7 陶春祥;細(xì)胞凋亡對心臟疾病的影響[N];中國醫(yī)藥報(bào);2003年
8 本報(bào)實(shí)習(xí)記者 梁媛媛;薛定:發(fā)現(xiàn)癌癥“開關(guān)”[N];北京科技報(bào);2010年
9 高書明;誘導(dǎo)癌細(xì)胞凋亡[N];中國醫(yī)藥報(bào);2004年
10 勇匯;中藥誘導(dǎo)癌細(xì)胞凋亡研究進(jìn)展[N];中國醫(yī)藥報(bào);2002年
相關(guān)博士學(xué)位論文 前10條
1 李國兵;Cofilin調(diào)控腫瘤細(xì)胞凋亡和線粒體自噬的作用機(jī)制及其干預(yù)策略研究[D];第三軍醫(yī)大學(xué);2015年
2 喬沛豐;外源性硫化氫對N2a細(xì)胞和APP/PS1雙轉(zhuǎn)基因小鼠線粒體分裂融合的影響及機(jī)制研究[D];重慶醫(yī)科大學(xué);2016年
3 張宏偉;鋰—匹羅卡品致癇大鼠海馬神經(jīng)元線粒體分裂變化研究[D];鄭州大學(xué);2015年
4 陳方哲;PINK1基因通過線粒體分裂融合途徑對腦缺血的神經(jīng)保護(hù)作用[D];復(fù)旦大學(xué);2013年
5 李夏春;人全長Tau蛋白過度表達(dá)對線粒體分裂融合動(dòng)態(tài)及細(xì)胞退變的影響[D];華中科技大學(xué);2013年
6 侯東霞;豬滋養(yǎng)層細(xì)胞的培養(yǎng)鑒定及ROCK抑制劑Y-27632對其影響的研究[D];內(nèi)蒙古大學(xué);2015年
7 阮紅峰;維生素C調(diào)控滋養(yǎng)層干細(xì)胞分化和妊娠維持的效應(yīng)及分子機(jī)制[D];浙江大學(xué);2015年
8 高丹忱;Dynamins在小鼠心肌缺血再灌注損傷中的作用機(jī)制及Dynasore的保護(hù)作用[D];浙江大學(xué);2013年
9 張曦倩;ERK信號傳導(dǎo)通路在滋養(yǎng)層細(xì)胞侵襲過程中的作用[D];第一軍醫(yī)大學(xué);2005年
10 劉玉和;氧化應(yīng)激誘導(dǎo)宮頸癌細(xì)胞死亡過程中溶酶體—線粒體途徑的作用機(jī)制[D];吉林大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 韓雙雪;淫羊藿苷修復(fù)阿爾茲海默癥線粒體分裂—融合動(dòng)力學(xué)失衡的機(jī)制研究[D];深圳大學(xué);2015年
2 陳咪咪;MCU介導(dǎo)線粒體分裂蛋白Drp-1在人中性粒細(xì)胞遷移中的作用[D];南方醫(yī)科大學(xué);2015年
3 張楠;大鼠骨骼肌鈍挫傷恢復(fù)過程中線粒體融合—分裂基因表達(dá)情況的研究[D];山東體育學(xué)院;2015年
4 周永方;線粒體分裂調(diào)控因子drp-1對于線蟲壽命的調(diào)節(jié)功能研究[D];杭州師范大學(xué);2016年
5 陳俊莉;阿魏酸通過誘導(dǎo)線粒體自噬保護(hù)糖氧剝奪引起的內(nèi)皮細(xì)胞損傷[D];廣州中醫(yī)藥大學(xué);2016年
6 王瑞肖;解偶聯(lián)蛋白2減緩高糖加重缺氧性神經(jīng)細(xì)胞損傷及其與線粒體分裂/融合關(guān)系的實(shí)驗(yàn)研究[D];寧夏醫(yī)科大學(xué);2016年
7 曹海燕;線粒體分裂與鈣信號交互作用促進(jìn)肝癌轉(zhuǎn)移的作用機(jī)制研究[D];第四軍醫(yī)大學(xué);2016年
8 王穎;血紅素氧合酶1對內(nèi)毒素致急性肺損傷大鼠的線粒體融合—分裂的影響[D];天津醫(yī)科大學(xué);2016年
9 李剛;線粒體分裂抑制劑-1在大鼠急性脊髓損傷中的保護(hù)作用及其機(jī)制[D];遼寧醫(yī)學(xué)院;2015年
10 申菲菲;線粒體分裂在甲狀腺鱗癌細(xì)胞SW579細(xì)胞增殖、凋亡以及侵襲中的作用[D];遼寧醫(yī)學(xué)院;2015年
,本文編號:2307387
本文鏈接:http://sikaile.net/yixuelunwen/yufangyixuelunwen/2307387.html