兩種磁性納米復合材料的制備及其在環(huán)境醫(yī)學中的應用研究
本文選題:界面共沉淀 + 溶膠-凝膠技術。 參考:《華中科技大學》2015年博士論文
【摘要】:二戰(zhàn)以來,隨著世界經濟的飛速發(fā)展和人們生活水平的不斷提高,工業(yè)、農業(yè)和居民生活排放使多種化學污染物進入環(huán)境水體,對水生生態(tài)系統(tǒng)造成嚴重破壞。特別是某些有機污染物,由于具有高毒性、生物蓄積性和環(huán)境持久性,通過飲水等多種途徑進入人體,在機體組織器官中蓄積,并隨血液循環(huán)和機體代謝引發(fā)多臟器功能紊亂,嚴重危害人體健康。 農業(yè)產業(yè)化的發(fā)展使農產品的生產越來越依賴于農藥、抗生素和激素等外源化學物質。這些化學物質的不合理使用將導致在農產品中的殘留,人體攝食了殘留超標的食品,將引發(fā)諸多不良反應,如急性毒性、過敏反應和內分泌紊亂,嚴重者導致器官病理性改變甚至癌變。 因此,開展環(huán)境污染物和食品殘留化學物監(jiān)測,系統(tǒng)、客觀地反映污染物動態(tài)變化和化學物存在水平,是評估人體暴露、評價人群健康危害、建立相關標準法規(guī)的前提條件,而有效的樣品前處理技術是實現樣品中痕量分析物準確定量的關鍵環(huán)節(jié)。本課題研究選擇與人類生活密切相關的地表水中全氟化合物(Perfluorinated compounds. PFCs)和食品中大環(huán)內酯類抗生素(Macrlide antibiotics, MACs)為研究對象,逐步開展了兩種具有選擇性識別能力的磁性納米復合材料的制備及在環(huán)境污染監(jiān)測和食品安全領域的應用研究。 本課題研究具體分為五個部分: 第一章選擇性識別全氟化合物的新型磁性納米復合材料的制備及性能評價研究 F-F相互作用發(fā)生在分子的氟化段與高度氟化的流動相或固定相之間。近年來,這種作用已在物質的提純和分離中有所應用。本研究首次將多氟單體和氨基單體結合,制備得到選擇性識別PFCs的新型磁性納米復合材料。首先采用改良的界面共沉淀法合成得到經-COOH修飾的Fe304納米顆粒(Nanoparticles, NPs), Fe3O4-COOH NPs近似球形,尺寸分布較窄,平均粒徑為10nm,能在水相介質中長期(2w)穩(wěn)定分散。而后,以Fe3O4-COOH NPs為基底,利用溶膠-凝膠技術,“一步法”制備得到由-NH2和全氟辛基功能化的磁性納米復合材料Fe3O4@SiO2-NH2F13。該磁性材料具有核殼結構,殼厚度在2nm左右。傅立葉變換紅外光(Fourier transform-infrared, FT-IR)譜圖中1560、1194和1145cm-1處的吸收峰證實了材料表面-NH2和C-F鍵的存在。Fe3O4@SiO2-NH2F13飽和磁化量(Saturated magnetization, Ms)為40.5emu g-1,能在外加磁場作用下快速分離。良好的親水活性能有效抑制干擾化合物在磁性材料上的疏水性吸附。選擇1H,1H,2H,2H-全氟-1-辛醇、正辛酸、鄰氟苯乙酸、3,4-二羥基苯乙酸、氟苯尼考和紅霉素作為參照化合物,評價了Fe3O4@SiO2-NH2F.3對PFCs的選擇性識別能力,結果證實,該磁性材料基于靜電作用、F-F相互作用以及尺寸排阻效應對PFCs表現出良好的選擇性。分別選擇乙醇和水作為吸附介質,得到Fe3O4@SiO2-NH2F13對PFCs的吸附等溫線,并利用兩種模型-Langmuir和Freundlich-進行擬合。結果表明,在乙醇中,該磁性材料對PFCs表現為單層吸附,吸附容量介于12.97-129.51mg g-1;在水中,除短鏈(C8)PFCs外,其余PFCs還可在磁性材料表面疏水聚集形成雙層、半膠束和膠束結構,很大程度上提高了材料對PFCs的吸附容量,甚至對長鏈(C9)PFCs的吸附容量超過了1000mg g-1。因此,該磁性納米復合材料將在PFCs痕量分析以及環(huán)境污染去除中表現出廣闊的應用前景。 第二章基于磁性固相萃取的快速檢測技術用于東湖水體中全氟化合物的污染狀況分析 PFCs在水相環(huán)境中廣泛存在已成為一個不爭的事實,大多數PFCs在水體多以ng L-1水平存在,建立快速、靈敏的檢測技術是準確反映地表水體中PFCs污染狀況的關鍵。本研究以第一章制備的Fe3O4@SiO2-NH2F13作為吸附劑,建立了一種簡便、快速、高效的磁性固相萃取(Magnetic solid-phase extraction, MSPE)技術,并用于地表水體中9種PFCs的富集與凈化,利用超高效液相色譜串聯質譜檢測對PFCs進行定量分析。在最優(yōu)的MSPE條件下,500mL水樣中的PFCs最終濃縮于0.5mL溶劑中,實現了對PFCs1000倍的富集效果。該方法的線性范圍在0.097-100ng L-1之間,R20.9917,檢測限介于0.029-0.099ng L-1。在0.5、5和50ng L-1的加標濃度下,PFCs加標回收率在90.05-106.67%之間,相對標準偏差介于3.11-12.62%。與利用Oasis-WAX (Mixed-mode weak anion exchanger)作為吸附劑的BS ISO25101:2009標準方法相比,水樣經MSPE處理后,色譜基線更為平滑,基質干擾得到有效去除,PFCs的響應信號顯著增強,實現了地表水體中PFCs的準確、靈敏性檢測。環(huán)東湖郭鄭、牛巢和湯菱三個湖區(qū),分別沿湖岸選擇8、6和3個有代表性的采樣點,采用全球定位系統(tǒng)對采樣點進行標記,利用上述建立的快速檢測技術對水樣中的PFCs進行檢測,分析東湖水體中PFCs的污染狀況。發(fā)現水體中PFCs的含量在30.12-125.35ng L-1之間,其中,全氟辛烷磺酸和全氟辛酸是主要的污染物,且PFCs污染以娛樂活動最多的牛巢區(qū)最為嚴重。盡管在大多數(70%)的受檢水樣中,全氟十一酸、全氟十二酸和全氟十四酸的含量低于方法定量限,但是由于湖體中沉積物和水生生物對長鏈(C8)PFCs的高濃度富集,提示在今后的研究中,有必要開展對東湖全方位、多角度、綜合性的PFCs污染監(jiān)測。 第三章磁性納米復合材料Fe3O4@SiO2-NH2F13選擇性去除長江水體中全氟化合物的應用研究 目前,在飲用水生產環(huán)節(jié),對水源水傳統(tǒng)的處理方式,如沙濾、臭氧化、氯化消毒、活性污泥凈化,均不能去除水體中的PFCs。盡管一些先進的處理技術,如超聲輻射、反相滲透,對PFCs表現出較好的去除效果,然而,從環(huán)保和經濟層面考慮,功能材料吸附是去除水體中PFCs較為有效的技術。本研究進一步以第一章制備的Fe3O4@SiO2-NH2F,3作為選擇性去除材料,系統(tǒng)研究了該磁性材料對長江水體中PFCs的去除效果。首先評價了時間、溫度和酸堿度對該磁性材料吸附性能的影響。該磁性材料可在5min內達到對PFCs的平衡吸附,遠小于陰離子交換樹脂IRA67和粉末型活性碳(Powder acti vated carbon, PAC)對PFCs的吸附平衡時間;隨著溫度的升高,磁性材料對PFCs的吸附量有輕微降低,說明該材料對PFCs的吸附為放熱過程;溶液pH對磁性材料的吸附性能有一定程度的影響,表現為隨pH升高,材料對PFCs的吸附量逐漸降低,特別當pH10時,對短鏈(C10)PFCs吸附量急劇降低。將Fe3O4@SiO2-NH2F,3用于長江水體中PFCs的快速、選擇性去除,同時與IRA67和PAC的去除效果進行比較。在1L加標濃度為0.5、5和50ng L-1的水樣中,0.5h內,該磁性材料對水樣中PFCs的去除率可達86.29%,遠高于IRA67和PAC對PFCs的去除率,兩者分別為12.86%和58.61%。而且,Fe3O4@SiO2-NH2F13對每種PFC均表現出良好的去除效果,除全氟辛烷磺酸(63.06-72.99%)和全氟庚酸(64.71-75.53%)外,其余PFCs的去除率均在80%以上。另外,與PAC相比,Fe3O4@SiO2-NH2F13能抵抗水體中高濃度腐植酸(Humicacid. HA)對去除效果的影響,當HA添加濃度為50mg L-1時,PFCs的去除率僅降低了9.81%,而PAC對PFCs的去除率卻降低了41.48%。同時,Fe3O4@SiO2-NH2F13制備方法簡便、便于磁性回收、可重復利用且對水體中PFCs的去除效果穩(wěn)定。因而,該磁性材料在環(huán)境水體PFCs的污染去除中表現出了較強的實用價值。 第四章選擇性識別大環(huán)內酯類抗生素的磁性分子印跡復合材料的制備及性能評價研究 分子印跡聚合物(Molecularly imprinted polymers, MIPs)基于其上印跡孔穴與目標分子間的形狀匹配和官能團相互作用,能選擇性識別模板分子及其結構類似物。而在Fe3O4NPs表面構建分子識別系統(tǒng),將MIPs的選擇性與Fe3O4NPs的優(yōu)良特性相結合,提高了對目標分析物的吸附速率,同時吸附材料又可由外加磁場快速分離。本研究基于表面分子印跡技術,以Fe3O4NPs為基底,紅霉素(Erythromycin, ERY)為模板分子,在Fe3O4NPs表面包被MTPs制備得到磁性分子印跡復合材料Fe3O4@SiO2@MIPsn該磁性材料具有核殼結構,FT-IR譜圖中1734cm-1處明顯的C=O伸縮振動峰表明MIPs在Fe3O4NPs表面的存在,同時,該磁性材料具有超順磁性特征,Ms為3.2emu g-1。Scatchard分析Fe3O4@SiO2@MIPs對ERY的吸附特征,結果表明在磁性材料表面存在有異質性吸附位點,這些吸附位點對ERY具有不同的親和力,同時,該磁性材料對ERY的吸附容量可達94.1mg g-1,印跡因子為11.9。選擇食品中常見的氟喹諾酮類和酰胺醇類抗生素作為參照化合物,評價了Fe3O4@SiO2@MIPs對MACs的選擇性,結果證實該磁性材料對多種MACs表現出良好的選擇性,可作為MSPE吸附劑用于復雜樣本的前處理。 第五章磁性固相萃取-高效液相色譜-紫外檢測法快速檢測食品樣本中大環(huán)內酯類抗生素的應用研究 大多數MACs(如紅霉素和阿奇霉素)缺少特異性的紫外生色基團,高效液相色譜紫外檢測(High-performance liquid chromatography-ultraviolet detection)對MACs定量分析時常選擇非特異性的低紫外吸收波長監(jiān)測物質響應信號,為避免樣品基質對紫外檢測的干擾,實現MACs的選擇性和靈敏性檢測,有效的樣品前處理至關重要。本研究將第四章制備的Fe3O4@SiO2@MIPs作為萃取吸附劑,建立了一種簡便、快速的MSPE技術,用于選擇性分離食品樣本中6種MACSo100mg磁性材料加入到20mL樣品提取液中,材料選擇性萃取MACS;5min后,材料經磁性分離,由10mL乙腈:水(2:8,v/v)淋洗去除非選擇性吸附的干擾化合物;10mL甲醇:50mMKH2PO4(pH8)(8:2, v/v)洗脫MACs,洗脫時間為2min,HPLC-UV對MACs定量分析。結果表明,在不同加標濃度下,MACs的萃取回收率可達89.1%,相對標準偏差低于12.4%;樣品經MSPE處理后,色譜基線平滑,基質干擾得到有效去除,MACs響應信號顯著增強。與其他將常規(guī)SPE技術與HPLC-UV聯用檢測食品樣本中MACs的分析方法相比,本研究建立的MSPE-HPLC-UV方法有更低的檢測限,避免了低紫外波長下樣品基質對紫外檢測的干擾,實現了豬肉、魚肉和蝦肉樣本中多種MACs快速、準確、靈敏性檢測。
[Abstract]:Since World War II, with the rapid development of world economy and the continuous improvement of people's living standards, industrial, agricultural and residential emissions have made a variety of chemical pollutants entering the environmental water body, causing serious damage to the aquatic ecosystem. In particular, some organic pollutants have high toxicity, bioaccumulation and environmental durability, through drinking water. And many other ways to enter the body, accumulate in the body tissues and organs, and lead to multiple organ dysfunction with blood circulation and body metabolism, which seriously endanger human health.
The development of agricultural industrialization makes the production of agricultural products more and more dependent on the foreign chemicals such as pesticides, antibiotics and hormones. The irrational use of these chemicals will lead to the residue in the agricultural products. The human body can feed the food with excess residue, which will lead to many adverse reactions, such as acute toxicity, allergic reaction and endocrine disorder. The organ causes pathological changes and even canceration of the organs.
Therefore, it is a prerequisite for evaluating the dynamic changes of pollutants and the existence level of chemicals, which is the prerequisite for evaluating the exposure of the human body, evaluating the health hazards of the population, and establishing the relevant standards and regulations, and the effective sample pretreatment technology is the key to the realization of the accurate quantitative analysis of the trace analyte in the sample. Key links. This subject studies the selection of Perfluorocompounds (Perfluorinated compounds. PFCs) and macrolide antibiotics (Macrlide antibiotics, MACs) in surface water, which is closely related to human life. The preparation and environmental pollution of two kinds of Magnetic Nanocomposites with selective recognition ability are gradually developed. Application research in the field of dyeing monitoring and food safety.
This research is divided into five parts:
Chapter 1 Preparation and performance evaluation of Novel Magnetic Nanocomposites with selective recognition of perfluorinated compounds
The interaction of F-F occurs between the fluorinated segments of the molecules and the highly fluorinated mobile phase or stationary phase. In recent years, this effect has been used in the purification and separation of materials. In this study, a new magnetic nano composite for selective identification of PFCs was prepared by combining the multi fluorine monomers with the amino monomers. -COOH modified Fe304 nanoparticles (Nanoparticles, NPs) were synthesized by surface co precipitation, and Fe3O4-COOH NPs was approximately spherical, with a narrow size distribution and an average particle size of 10nm, which could be stable and dispersed in the medium of water phase (2W). Then, Fe3O4-COOH NPs was based on the sol-gel technique, and the "one step method" was used to prepare from -NH2 and perfluorooxine. Based on the functionalized magnetic nanocomposite Fe3O4@SiO2-NH2F13., the magnetic material has a core shell structure with a shell thickness of about 2nm. The absorption peaks at 15601194 and 1145cm-1 in the Fu Liye transform infrared (Fourier transform-infrared, FT-IR) spectra confirm the.Fe3O4@SiO2-NH2F13 saturation magnetization of the -NH2 and C-F bonds on the surface of the material (Satura). Ted magnetization, Ms) is 40.5emu g-1, which can be separated rapidly under the effect of magnetic field. Good hydrophilic activity can effectively inhibit the hydrophobic adsorption of interfered compounds on magnetic materials. Select 1H, 1H, 2H, 2H- perfluoro -1- octanol, ortho octanoic acid, phthalic acid, 3,4- dihydroxy phenylacetic acid, florfenicol and erythromycin as reference compounds. The selective recognition ability of Fe3O4@SiO2-NH2F.3 to PFCs has been obtained. The results show that the magnetic material is based on electrostatic action, F-F interaction and size exclusion effect have good selectivity to PFCs. The adsorption isotherms of Fe3O4@SiO2-NH2F13 to PFCs are obtained by choosing ethanol and water as adsorbents, and two models of -Langmuir are used. The results show that the magnetic material is monolayer with the adsorption capacity of PFCs in ethanol, and the adsorption capacity is between 12.97-129.51mg g-1, and in water, in addition to the short chain (C8) PFCs, the remaining PFCs can also form a double layer, a semi micelle and a micelle structure on the surface of the magnetic material, which greatly improves the absorption of the material to the PFCs. The adsorption capacity of the long chain (C9) PFCs is more than 1000mg g-1., so the Magnetic Nanocomposites will have a broad application prospect in the trace analysis of PFCs and the removal of environmental pollution.
The second chapter analyzes the pollution of perfluorinated compounds in East Lake waters based on the rapid detection technology of magnetic solid phase extraction.
The widespread existence of PFCs in the water environment has become an indisputable fact. Most of the PFCs exists at the level of ng L-1 in the water body. Rapid and sensitive detection technology is the key to accurately reflect the status of PFCs pollution in the surface water body. In this study, the first chapter of the preparation of Fe3O4@SiO2-NH2F13 as an adsorbent, a simple, rapid and high level is established. The effective magnetic solid phase extraction (Magnetic solid-phase extraction, MSPE) technology was used for the enrichment and purification of 9 kinds of PFCs in the surface water. The quantitative analysis of PFCs was carried out by super high performance liquid chromatography tandem mass spectrometry. In the optimal MSPE condition, PFCs in 500mL water was concentrated in 0.5mL solvent and realized the rich of PFCs1000 times. The linear range of this method is between 0.097-100ng L-1, R20.9917, and the detection limit is between 0.029-0.099ng L-1. and 0.5,5 and 50NG L-1, and the recovery rate of PFCs plus standard is between 90.05-106.67%, and the relative standard deviation is between 3.11-12.62%. and using Oasis-WAX as adsorbent. Compared with the 2009 standard method, after the water sample was treated with MSPE, the baseline of the chromatography was more smooth, the matrix interference was effectively removed, the response signal of the PFCs was significantly enhanced, and the accuracy and sensitivity of PFCs in the surface water body were detected. The Three Lakes region of East Lake, ring East Lake, cattle nest and Tang Ling, selected 8,6 and 3 representative sampling points along the lake bank, and adopted the whole The ball positioning system marks the sampling point, and uses the rapid detection technology established above to detect the PFCs in water samples and analyze the pollution status of PFCs in East Lake water body. It is found that the content of PFCs in the water body is between 30.12-125.35ng L-1, among which perfluorooctane sulfonic acid and perfluorooctyl acid are the main pollutants, and PFCs pollution is entertaining. Most of the cattle nest areas are the most serious. Although the content of perfluoroacid eleven acid, perfluoro twelve acid and perfluoroacid fourteen acid is lower than the method quantitative limit in most of the (70%) samples, it is necessary to carry out all directions to East Lake because of the high concentration of sediments and aquatic organisms in the lake and aquatic organisms for the high concentration of long chain (C8) PFCs. Angle, comprehensive PFCs pollution monitoring.
The third chapter is about the selective removal of perfluorinated compounds in the Yangtze River water by magnetic nanocomposite Fe3O4@SiO2-NH2F13.
At present, in the drinking water production link, the traditional treatment of water source water, such as sand filtration, ozonation, chlorination disinfection and activated sludge purification, can not remove the PFCs. in water body, although some advanced treatment techniques, such as ultrasonic radiation, reverse phase infiltration and better removal effect on PFCs, are shown, however, from the environmental and economic level, the functional material is considered. Material adsorption is a more effective technique for removing PFCs in water. This study has further studied the removal effect of the magnetic material for the removal of PFCs in the Yangtze River with Fe3O4@SiO2-NH2F and 3 as a selective removal material. First, the effects of time, temperature and pH on the adsorption properties of the magnetic material were evaluated. The material can reach the equilibrium adsorption of PFCs in 5min, which is much less than the adsorption equilibrium time of the anion exchange resin IRA67 and the powder type active carbon (Powder acti vated carbon, PAC) on PFCs. As the temperature increases, the adsorption of magnetic materials to PFCs decreases slightly, indicating that the adsorption of the material to PFCs is the exothermic process, and the solution pH is magnetic. The adsorption property of the material has a certain influence. The adsorption capacity of the material to PFCs gradually decreases with the increase of pH. Especially when pH10, the adsorption capacity of the short chain (C10) PFCs is sharply reduced. Fe3O4@SiO2-NH2F, 3 is used for the rapid and selective removal of PFCs in the Yangtze River water, and compared with the removal efficiency of IRA67 and PAC at the same time. The concentration of the standard concentration in 1L is in the 1L. In the water samples of 0.5,5 and 50NG L-1, the removal rate of PFCs in water samples can reach 86.29% in 0.5h, which is far higher than IRA67 and PAC for PFCs removal, both are 12.86% and 58.61%., respectively. Fe3O4@SiO2-NH2F13 shows good removal efficiency for each PFC, except PFOS (63.06-72.99%) and perfluorohepic acid. In addition, the removal rate of the remaining PFCs is above 80%. In addition, compared with PAC, Fe3O4@SiO2-NH2F13 can resist the effect of high concentration humic acid (Humicacid. HA) on the removal efficiency. When HA adding concentration is 50mg L-1, the removal rate of PFCs is only 9.81%, while PAC to PFCs reduces the 41.48%.. The method is simple and convenient for magnetic recovery. It can be reused and has a stable removal effect of PFCs in water body. Therefore, the magnetic material has shown strong practical value in the pollution removal of PFCs in environmental water body.
The fourth chapter is the preparation and evaluation of magnetic molecularly imprinted composites for selective identification of macrolides antibiotics.
Molecular imprinted polymer (Molecularly imprinted polymers, MIPs) can selectively identify template molecules and their structural analogues based on the shape matching and functional group interaction between the upper imprinted holes and the target molecules. The molecular recognition system is constructed on the Fe3O4NPs surface, and the selectivity of MIPs and the excellent properties of Fe3O4NPs are combined and improved. The adsorption rate of the target analyte and the adsorption material can be separated rapidly by the external magnetic field. Based on the surface molecularly imprinted technique, Fe3O4NPs is used as the substrate and erythromycin (Erythromycin, ERY) is the template molecule, and the magnetic molecularly imprinted composite Fe3O4@SiO2@MIPsn, the magnetic material, is prepared on the Fe3O4NPs surface by MTPs. With nuclear shell structure, the obvious C=O stretching vibration peak at 1734cm-1 in the FT-IR spectrum indicates the existence of MIPs on the Fe3O4NPs surface. At the same time, the magnetic material has superparamagnetic characteristics. Ms is a 3.2emu g-1.Scatchard to analyze the adsorption characteristics of Fe3O4@SiO2@MIPs to ERY. The results show that there is a heterogeneous adsorption site on the surface of the magnetic material and these adsorption sites are found on the surface of the magnetic material. It has different affinity to ERY, and the adsorption capacity of the magnetic material to ERY can reach 94.1mg g-1, and the imprinting factor is 11.9. selected as the common fluoroquinolone and amidoalcohol antibiotics as reference compounds, and the selectivity of Fe3O4@SiO2@MIPs to MACs is evaluated. The results show that the magnetic material is good for a variety of MACs. The selectivity can be used as a MSPE adsorbent for pretreatment of complex samples.
The fifth chapter is the application of magnetic solid phase extraction high performance liquid chromatography Ultraviolet Detection for rapid detection of macrolide antibiotics in food samples.
Most MACs (such as erythromycin and azithromycin) lack specific ultraviolet chromogenic groups, and high performance liquid chromatography (High-performance liquid chromatography-ultraviolet detection) often selects non specific low ultraviolet absorption wavelength monitoring material response signal to MACs quantitative analysis, in order to avoid the sample matrix to UV detection. It is very important to detect the selectivity and sensitivity of MACs. Effective sample preprocessing is very important. In this study, the Fe3O4@SiO2@MIPs as an extractant in fourth chapters was used as an extractant, and a simple and rapid MSPE technology was established for the application of 6 MACSo100mg magnetic materials in selective separation food samples to 20mL sample extract. After selective extraction of MACS, after 5min, the material was separated by magnetic separation, and the non selective adsorptive compounds were removed by 10mL acetonitrile: water (2:8, v/v) leaching; 10mL methanol: 50mMKH2PO4 (pH8) (8:2, v/v) elution MACs, and the elution time was 2min. The relative standard deviation was less than 12.4%; after MSPE treatment, the baseline was smooth, the matrix interference was effectively removed, and the MACs response signal was significantly enhanced. Compared with the other MACs analysis methods that used conventional SPE technology and HPLC-UV combined with the detection of food samples, the MSPE-HPLC-U was established in this study.
【學位授予單位】:華中科技大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TB383.1;R12
【相似文獻】
相關期刊論文 前7條
1 楊百全;李晨旭;鮑玉慶;楊文勝;;磁性納米復合材料在法醫(yī)學領域中的應用展望[J];刑事技術;2006年06期
2 ;新型納米材料用于癌癥早期診斷[J];中國醫(yī)療器械雜志;2011年03期
3 商維榮;王冬霞;;質量比和聚合方式對PMMA/CaCO_3納米復合材料抗彎強度的影響[J];黑龍江醫(yī)藥科學;2009年01期
4 尤飛;石王瑩;胡源;;發(fā)展阻燃型HIPS納米復合材料的研究(英文)[J];火災科學;2005年04期
5 周劍;張建湘;湯健;李全利;周健;蔡華瓊;;瓊脂—磷灰石仿生納米復合材料修復兔脛骨缺損的實驗研究[J];山東醫(yī)藥;2010年20期
6 錢晨;張修銀;;PMMA納米復合材料的研究進展[J];口腔頜面修復學雜志;2010年02期
7 ;[J];;年期
相關會議論文 前10條
1 肖紅梅;楊洋;李元慶;鄭斌;付紹云;;功能納米復合材料研究進展[A];第十五屆全國復合材料學術會議論文集(上冊)[C];2008年
2 葛嶺梅;周安寧;李天良;曲建林;;礦物納米復合材料的研究進展[A];新世紀 新機遇 新挑戰(zhàn)——知識創(chuàng)新和高新技術產業(yè)發(fā)展(上冊)[C];2001年
3 馬永梅;;塑料/膨潤土納米復合材料市場應用[A];2003年中國納微粉體制備與技術應用研討會論文集[C];2003年
4 陳潔;徐曉楠;楊玲;;納米復合材料的阻燃研究[A];中國化學會第二十五屆學術年會論文摘要集(下冊)[C];2006年
5 趙海波;徐波;王俊勝;王玉忠;;主鏈含磷阻燃共聚酯/硫酸鋇納米復合材料的研究[A];2009年中國阻燃學術年會論文集[C];2009年
6 張忠;;多級次多尺度納米復合材料力學性能研究[A];2010年第四屆微納米海峽兩岸科技暨納微米系統(tǒng)與加工制備中的力學問題研討會摘要集[C];2010年
7 盧小泉;;基于納米復合材料的電化學生物傳感器[A];第六屆海峽兩岸分析化學會議摘要論文集[C];2010年
8 周安寧;楊伏生;曲建林;李天良;葛嶺梅;;礦物納米復合材料研究進展[A];納米材料和技術應用進展——全國第二屆納米材料和技術應用會議論文集(下卷)[C];2001年
9 上官文峰;;納米復合材料的構筑及其光催化性能[A];納微粉體制備與應用進展——2002年納微粉體制備與技術應用研討會論文集[C];2002年
10 林鴻福;;加速聚合物/粘土納米復合材料的產業(yè)化進程[A];浙江省科協學術研究報告——浙江優(yōu)勢非金屬礦產資源的開發(fā)利用研究論文集[C];2004年
相關重要報紙文章 前10條
1 宋玉春;納米復合材料能否風行?[N];中國石化報;2005年
2 李聞芝;納米復合材料產業(yè)化研討會將開[N];中國化工報;2004年
3 李偉;汽車用上納米復合材料部件[N];中國化工報;2004年
4 渤海投資 周延;武漢塑料 突破60日均線壓制[N];證券時報;2004年
5 唐偉家 吳汾 李茂彥;尼龍納米復合材料的開發(fā)和市場[N];中國包裝報;2008年
6 華凌;納米復合材料提升自充電池性能[N];中國化工報;2014年
7 塑化;聚合物系納米復合材料發(fā)展前景廣闊[N];國際商報;2003年
8 唐偉家 吳汾 李茂彥;尼龍納米復合材料的開發(fā)和包裝應用[N];中國包裝報;2008年
9 本報記者 王海霞;納米復合材料將廣泛應用到新能源領域[N];中國能源報;2009年
10 劉霞;高效存儲氫的納米復合材料研制成功[N];科技日報;2011年
相關博士學位論文 前10條
1 李念武;鋰硫二次電池用碳基含硫正極材料的研究[D];南京航空航天大學;2013年
2 夏雷;尼龍6及其納米復合材料的熱氧穩(wěn)定性研究[D];浙江大學;2013年
3 杜青青;高效熒光碳點合成及其功能復合材料研究[D];山東大學;2015年
4 劉江濤;四種納米復合材料的制備及其電化學和電化學傳感研究[D];西北大學;2015年
5 李蘇原;SnO_2/C納米復合材料的制備及其儲鋰性能研究[D];蘭州大學;2015年
6 郭改萍;環(huán)境友好大豆蛋白質材料改性研究[D];北京化工大學;2015年
7 孫遜;新型介孔無機物/聚苯胺納米復合材料的制備及其性能研究[D];蘭州大學;2012年
8 卜小海;螺旋聚炔基納米復合材料的制備及其紅外輻射性能研究[D];東南大學;2015年
9 王洪賓;LiFePO_4/C納米復合材料的設計、合成及其儲鋰性能研究[D];吉林大學;2015年
10 楊慧;基于溶劑澆鑄法和沉積法改性的聚對苯二甲酸乙二醇酯(PET)[D];上海大學;2015年
相關碩士學位論文 前10條
1 易華玉;納米復合材料和酶放大構建凝血酶電化學適體傳感器的研究[D];西南大學;2015年
2 于丹;BaTiO_3基介電陶瓷和納米復合材料的制備及性能研究[D];浙江大學;2015年
3 王超;PVC納米復合材料的制備及其性能研究[D];河北大學;2015年
4 譚麗莎;功能化磁性納米復合材料的制備及其對Pb(Ⅱ)和Cr(Ⅵ)的選擇性去除研究[D];浙江大學;2015年
5 杜青;鋯基納米復合材料深度凈化水體中的微量重金屬[D];燕山大學;2015年
6 王正奇;硫化鋅納米復合材料的制備、表征及性質研究[D];陜西科技大學;2015年
7 明洪濤;TiO_2/Au核殼納米復合材料的制備及其光學性質研究[D];東北師范大學;2015年
8 趙元旭;多壁碳納米管/聚碳酸酯復合材料的制備與性能研究[D];鄭州大學;2015年
9 孫藝銘;金/碳納米復合材料生物傳感器檢測多藥耐藥基因MDR1及其表達蛋白ABCB1的實驗研究[D];福建醫(yī)科大學;2015年
10 陳亞;基于碳納米復合材料及β-環(huán)糊精對手性小分子識別研究[D];西南大學;2015年
,本文編號:1773985
本文鏈接:http://sikaile.net/yixuelunwen/yufangyixuelunwen/1773985.html