雙聚類算法研究及其在我國藥品不良反應(yīng)監(jiān)測中的應(yīng)用
[Abstract]:BACKGROUND AND OBJECTIVE: As an important part of post-marketing safety monitoring, ADR spontaneous reporting system can collect ADR reports extensively and realize timely monitoring of ADR. The number of ADRs surged to more than 1.4 million. Researchers can detect a large number of ADR signals from the data of the spontaneous reporting system by using the method of asymmetric measurement, which provides a basic basis for drug safety evaluation. At present, the evaluation methods of ADR signal mainly include comparing the detected ADR signal with the data of drug instructions and conducting expert evaluation. The evaluation efficiency is low. How to improve the efficiency of signal evaluation is a researcher in the field of ADR monitoring. It is pointed out that the analysis of multiple similar signals containing the same adverse reaction or multiple similar signals containing the same drug may improve the efficiency of signal evaluation. Class analysis method is used to identify the similar signal combination in the ADR signal data of our country. The information of the confirmed signals in the combination is used to evaluate the evaluation signal quickly, and the efficiency of signal evaluation is improved. The algorithm is introduced into the analysis of ADR signal data in China. The original quantitative data matrix is constructed from the detected ADR signal data. The quantitative matrix is transformed into different 0-1 data matrix according to the IC value threshold of distinguishing strong and weak signals, and the different 0-1 data matrix is doubly aggregated by combining different Bimax algorithm parameters. Classification analysis identifies several drug-adverse reaction combinations whose corresponding signal values exceed the threshold, and obtains the information of similarity signal combinations. Then, the rank sum ratio comprehensive evaluation method combined with the average coincidence ratio, involving two indicators of the ratio, is used to evaluate the results of the analysis of the double clustering, and the IC value threshold and the maximum value of the optimal discrimination between strong and weak signals are determined. Finally, the application effect of bi-clustering algorithm in the analysis of ADR signal data in China is clarified. The results show that the optimal region is determined by comparing the results of bi-clustering method under different parameter combinations with rank sum ratio comprehensive evaluation method. The thresholds of the strong and weak signals are IC=0.80, and the optimal parameters of the Bimax algorithm are the minimum number of rows of two clusters and the minimum number of columns of two clusters. Analogical evaluation showed that 1836 clusters, accounting for 42.8% of the total number of clusters and involving 72.3% of IC values not less than 0.80, contained similarity of drugs or adverse reactions; at least 4272 clusters, accounting for 99.5% of the total number, contained confirmation signals from the drug specifications. All the signals were confirmed by the drug instructions in 193 clusters, accounting for 4.5% of the total. Risperidone was the most frequent drug in all the clusters, accounting for 16.5% of the total 708 clusters, and liver dysfunction was the most frequent adverse reaction, accounting for 16.8% of the total 720 clusters. CONCLUSION: Bicluster analysis of ADR signal data in China can provide valuable information for identification of potential ADR, screening of ADR signal and so on. It can improve the efficiency of signal evaluation in ADR monitoring in China.
【學(xué)位授予單位】:第二軍醫(yī)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:R95
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃維佳;;淺析“毒副作用”與“不良反應(yīng)”[J];中國科技術(shù)語;2016年05期
2 朱磊;黃萍;李穎;;我國藥品不良反應(yīng)監(jiān)測現(xiàn)狀及存在問題[J];中國藥事;2016年07期
3 雷右喜;;綜合評價研究方法綜述[J];商場現(xiàn)代化;2016年02期
4 史文濤;侯永芳;葉小飛;朱田田;張?zhí)煲?吳桂芝;賀佳;;我國藥品不良反應(yīng)自發(fā)呈報系統(tǒng)中信號強(qiáng)度分級閾值的探索[J];藥物流行病學(xué)雜志;2015年08期
5 路長飛;田月潔;;基于鹽酸克林霉素注射劑不良反應(yīng)監(jiān)測數(shù)據(jù)探索聚類分析方法在藥品不良反應(yīng)監(jiān)測中的應(yīng)用[J];中國藥物警戒;2014年01期
6 樓陸軍;劉銀生;羅潔霞;朱寒根;高云;;再論我國藥品不良反應(yīng)監(jiān)測的現(xiàn)狀與完善對策[J];中國藥業(yè);2012年18期
7 張敏;戈文航;;雙聚類的研究與進(jìn)展[J];微型機(jī)與應(yīng)用;2012年04期
8 吳嘉瑞;張冰;;試論數(shù)據(jù)挖掘決策樹方法在藥物警戒研究中的應(yīng)用[J];中國藥物警戒;2012年01期
9 王志剛;陳鑫;謝麗芳;楊嘯林;張正國;;藥物功能模式相似度及其聚類[J];中國生物醫(yī)學(xué)工程學(xué)報;2011年06期
10 馮變玲;楊世民;藍(lán)夏璐;魏芬;尤海生;;心腦血管疾病用藥不良反應(yīng)與藥品品種關(guān)系的聚類分析[J];中國藥業(yè);2011年06期
相關(guān)會議論文 前1條
1 馮變玲;楊世民;尤海生;藍(lán)夏璐;魏芬;;基于數(shù)據(jù)挖掘技術(shù)的心腦血管用藥不良反應(yīng)與藥品品種間聚類分析[A];2010年中國藥學(xué)大會暨第十屆中國藥師周論文集[C];2010年
相關(guān)博士學(xué)位論文 前1條
1 于躍;基于大數(shù)據(jù)挖掘的藥品不良反應(yīng)知識整合與利用研究[D];吉林大學(xué);2016年
相關(guān)碩士學(xué)位論文 前2條
1 汪晶;我國藥品不良反應(yīng)自發(fā)呈報系統(tǒng)信號檢測中壓縮估計參數(shù)的探索[D];第二軍醫(yī)大學(xué);2015年
2 李莉;五種雙聚類算法在基因表達(dá)譜數(shù)據(jù)中的比較與評價[D];西北農(nóng)林科技大學(xué);2012年
,本文編號:2184552
本文鏈接:http://sikaile.net/yixuelunwen/yiyaoxuelunwen/2184552.html