非法疫苗風(fēng)險(xiǎn)區(qū)的空間范圍預(yù)測(cè)
本文選題:非法疫苗 + MAXENT模型 ; 參考:《山東科技大學(xué)》2017年碩士論文
【摘要】:自“山東濟(jì)南非法經(jīng)營疫苗系列案件”披露后,該事件影響范圍廣泛,引發(fā)社會(huì)各界人士的高度關(guān)注和重視,引起公眾、受種者和兒童家長對(duì)涉案疫苗安全性和有效性的擔(dān)憂。科學(xué)嚴(yán)謹(jǐn)?shù)胤治錾姘敢呙缃臃N在中國可能波及的空間范圍,為采取后續(xù)處置措施提供依據(jù),保障受種者的健康,盡快恢復(fù)公眾接種疫苗的信心,是本研究的主要目的。在生態(tài)學(xué)中,解決物種分布適宜區(qū)的問題通常采用物種分布模型(species distribution models,SDMS)推測(cè)物種在某一地區(qū)的適生性分布。本次研究借鑒物種適宜性分布預(yù)測(cè)方法,分別利用最大熵模型(MAXENT)和規(guī)則集遺傳算法模型(GARP)在地理空間上對(duì)非法疫苗在中國地區(qū)的潛在分布范圍進(jìn)行了預(yù)測(cè)。MAXENT模型是根據(jù)物種現(xiàn)實(shí)分布點(diǎn)和物種分布區(qū)域的環(huán)境預(yù)測(cè)物種的潛在分布區(qū),其結(jié)果要優(yōu)于同類的其他預(yù)測(cè)模型。本文應(yīng)用生態(tài)位模型和GIS技術(shù)對(duì)涉案疫苗在中國區(qū)域內(nèi)可能波及范圍進(jìn)行估計(jì),明確涉案疫苗風(fēng)險(xiǎn)區(qū)的空間分布及主要影響因子,以期為政府采取后續(xù)處置措施提供依據(jù)。并利用受試者工作特征曲線比較不同模型模擬精度。實(shí)驗(yàn)結(jié)果表明:1 )MAXENT模型和GARP模型都較好的預(yù)測(cè)了非法疫苗的風(fēng)險(xiǎn)區(qū),山東、河北、河南、江蘇、安徽是主要的受涉案疫苗影響的高風(fēng)險(xiǎn)區(qū)。2)人口密度、產(chǎn)業(yè)結(jié)構(gòu)是影響非法疫苗風(fēng)險(xiǎn)區(qū)空間分布的主要環(huán)境因子。3)GARP模型得到的結(jié)果分析:產(chǎn)生了連續(xù)范圍較大的潛在分布區(qū),在沒有非法疫苗的地區(qū)也產(chǎn)生了過多預(yù)測(cè)的破碎化分布;而MAXENT預(yù)測(cè)到的潛在分布區(qū),在不同區(qū)域具有不同的環(huán)境適生性指數(shù),而且成功地排除了不合理的破碎化分布,與采集到的真實(shí)數(shù)據(jù)對(duì)比分布區(qū)吻合度較高,從而更準(zhǔn)確地展示了非法疫苗流入的潛在分布格局。
[Abstract]:Since the disclosure of the case of "the illegal Operation of Vaccine Series in Jinan, Shandong Province", the incident has affected a wide range of people from all walks of life, and has aroused public concern and concern about the safety and effectiveness of the vaccine involved, as well as among the public, grantees and parents of children. The main purpose of this study is to scientifically and rigorously analyze the space range of the vaccination involved in China, to provide the basis for the subsequent disposal measures, to protect the health of the seed recipients and to restore public confidence in the vaccination as soon as possible. In ecology, species distribution models are usually used to predict the suitable distribution of species in a region. This study draws lessons from the prediction method of species suitability distribution, The maximum entropy model (MAXENT) and the rule set genetic algorithm (GARP) model are used to predict the potential distribution of illegal vaccines in China in geographical space. The MAXENT model is based on the species distribution point and species distribution area. Potential distribution of environmentally predicted species, The results are superior to other prediction models of the same kind. In this paper, niche model and GIS technique are used to estimate the potential spread of the vaccine in China, and to determine the spatial distribution and main influencing factors of the vaccine risk area, so as to provide the basis for the government to take further measures to dispose the vaccine. The simulation accuracy of different models was compared by using the operating characteristic curve of the subjects. The experimental results show that both the 1: 1 Maxent model and the GARP model are good predictors of the population density in the risk areas of illegal vaccines, Shandong, Hebei, Henan, Jiangsu, and Anhui are the main high-risk areas affected by the vaccines involved. Industrial structure is the main environmental factor affecting the spatial distribution of illegal vaccine risk areas. The results obtained from the GARP model are as follows: a large range of potential distribution areas have been generated, and too many predicted fragmentation distributions have been produced in areas without illegal vaccines; The potential distribution area predicted by MAXENT has different environmental suitability index in different regions, and the unreasonable fragmentation distribution is successfully excluded, which is consistent with the real data collected. Thus a more accurate picture of the illegal vaccine inflow potential distribution pattern.
【學(xué)位授予單位】:山東科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:R95;P208
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉繼蓮;施永輝;;第二類疫苗管理現(xiàn)狀的思考[J];職業(yè)衛(wèi)生與病傷;2014年06期
2 胡昆;;加強(qiáng)疫苗管理的具體做法[J];中國醫(yī)藥指南;2012年35期
3 張穎;李君;林蔚;強(qiáng)勝;;基于最大熵生態(tài)位元模型的入侵雜草春飛蓬在中國潛在分布區(qū)的預(yù)測(cè)[J];應(yīng)用生態(tài)學(xué)報(bào);2011年11期
4 郭水良;高平磊;婁玉霞;;應(yīng)用MaxEnt模型預(yù)測(cè)檢疫性雜草毒萵苣在我國的潛分布范圍[J];上海交通大學(xué)學(xué)報(bào)(農(nóng)業(yè)科學(xué)版);2011年05期
5 吳建國;;氣候變化對(duì)7種喬木植物分布的潛在影響[J];植物分類與資源學(xué)報(bào);2011年03期
6 曹學(xué)仁;陳林;周益林;段霞瑜;;基于MaxEnt的麥瘟病在全球及中國的潛在分布區(qū)預(yù)測(cè)[J];植物保護(hù);2011年03期
7 張海娟;陳勇;黃烈健;倪漢文;;基于生態(tài)位模型的薇甘菊在中國適生區(qū)的預(yù)測(cè)[J];農(nóng)業(yè)工程學(xué)報(bào);2011年S1期
8 杜中修;鄭勇奇;魯法典;張川紅;;火炬樹在我國的適生區(qū)預(yù)測(cè)[J];廣東農(nóng)業(yè)科學(xué);2011年02期
9 曹向鋒;錢國良;胡白石;劉鳳權(quán);;采用生態(tài)位模型預(yù)測(cè)黃頂菊在中國的潛在適生區(qū)[J];應(yīng)用生態(tài)學(xué)報(bào);2010年12期
10 馬松梅;張明理;張宏祥;孟宏虎;陳曦;;利用最大熵模型和規(guī)則集遺傳算法模型預(yù)測(cè)孑遺植物裸果木的潛在地理分布及格局[J];植物生態(tài)學(xué)報(bào);2010年11期
相關(guān)博士學(xué)位論文 前1條
1 王運(yùn)生;生態(tài)位模型在外來入侵物種風(fēng)險(xiǎn)評(píng)估中的應(yīng)用研究[D];湖南農(nóng)業(yè)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前1條
1 洪波;基于GIS的有害生物空間分布預(yù)測(cè)系統(tǒng)研究[D];西北農(nóng)林科技大學(xué);2009年
,本文編號(hào):1909883
本文鏈接:http://sikaile.net/yixuelunwen/yiyaoxuelunwen/1909883.html