內(nèi)皮祖細(xì)胞眼內(nèi)移植的示蹤及對(duì)視網(wǎng)膜血管損傷修復(fù)的研究
[Abstract]:Diabetic retinopathy, including retinopathy of premature infants, central retinal vein occlusion and other retinal ischemic diseases, is characterized by neovascularization. Additionally, it causes edema and exudation of peripheral tissues, and then leads to ischemia and hypoxia of retinal tissues, and compensatory formation of new blood vessels with incomplete organizational structure, leading to bleeding, proliferation, and even retinal detachment, which seriously threatens the visual acuity of patients. Endothelial growth factor inhibitors, photodynamic therapy, steroid hormones and surgical treatment can reduce angiogenesis to a certain extent, but can not fundamentally eliminate angiogenesis factors, and accompanied by a series of side effects and the possibility of recurrence. Retinal ischemic diseases and pathological neovascularization play an important role in the formation and development of retinal ischemic diseases. Therefore, the key to control retinal neovascularization is to repair damaged vascular endothelium and improve retinal hypoxia and hypoxia. EPCs transplantation can improve the ischemic injury of heart, brain and limbs, increase the blood flow and capillary density in ischemic sites, and improve the therapeutic effect on ischemic diseases. If EPCs can be effectively transplanted to the ischemic and hypoxic retina region It is possible to repair damaged vascular endothelium, improve retinal blood supply, and avoid pathological neovascularization. This study requires not only appropriate cell transplantation, but also a stable and efficient tracing method to provide an objective basis for the experiment.
Carboxyfluorescein diacetate succinimide ester (CFSE) labeled EPCs, Dil labeled acetylated low density lipoprotein (DiI-AcLDL) labeled EPCs and lentivirus mediated green fluorescent protein (GFP) transduction of EPCs were used to compare the tracing of EPCs in vitro and in vivo, and to observe the repairing effect of transplanted EPCs on retinal vascular injury. It provides an experimental basis for selecting suitable markers for cell transplantation and better tracking the efficacy of EPCs transplantation.
Method
(1) Culture and identification of EPCs from human umbilical cord blood: Mononuclear cells from human umbilical cord blood were isolated by hydroxyethyl starch sedimentation and Percoll density gradient centrifugation, and differentiated into EPCs in vitro. The cells were identified by morphology, flow cytometry, immunofluorescence staining and electron microscopy. Methods EPCs were labeled in vitro by CFSE, DiI-AcLDL and lentivirus-mediated GFP gene transduction. The morphological changes of the cells before and after labeling were observed by inverted phase contrast microscope. The viability and adhesion of the labeled EPCs were measured by Trypan blue staining and adherent cell counting. The fluorescence intensity was observed under fluorescence microscope. Flow cytometry was used to determine the positive rate of labeling and compare the advantages and disadvantages of the three methods. (3) Intraocular transplantation of labeled EPCs: C57BL/6N mice retinal vascular injury model was established by multi-wavelength krypton laser selective injury. EPCs labeled with LDL, CFSE and lentivirus mediated GFP gene transduction were transplanted into vitreous cavity by microinjector under operating microscope. Fundus photography, retinal paraffin section, frozen section and retinal paving were observed at different time intervals. The distribution, fluorescence intensity and persistence of labeled cells in longitudinal and transverse plane of retina were observed. Time and other conditions, and compare the repair of retinal vascular injury before and after EPCs transplantation.
Result
(1) The primary cultured EPCs were isolated from human umbilical cord blood and showed typical morphological changes during the culture process. The cells expressed CD34, CD133 and''VEGFR-2 in different degrees. They could phagocytose DiI-AcLDL and combine with FITC-UEA-I. The W-P bodies of endothelial cells were observed under electron microscope, which proved that most of the cultured cells were in large part of the population. The positive rate of EPCs labeled with DiI-AcLDL was up to 80%. The fluorescence intensity of CFSE and DiI-AcLDL labeled EPCs lasted for 4 weeks and gradually decreased with the time of culture. Four days after transduction of GFP gene by lentivirus, the positive rate of EPCs labeled with DiI-AcLDL was up to 95%. The green fluorescence was observed under confocal microscope, and then the green fluorescence positive cells increased gradually, the fluorescence intensity increased gradually, and the transfection efficiency exceeded 30% at 4 weeks after transduction. Changes. (3) In vivo, retinal vascular injury model was successfully established by laser photocoagulation in mice. After intravitreal injection of labeled EPCs, laser spot pigmentation and scar formation were observed in fundus photography at 4 weeks after transplantation, which were less severe than those in non-transplanted eyes. After transplantation, the frozen sections of the retina showed that fluorescent cells could be seen on the surface of the retina 2 days after transplantation of DiI-AcLDL and CFSE-labeled EPCs. At 1 week, fluorescent cells could be seen in the injured area. At 4 weeks, fluorescent cells could be seen in all layers of the retina. There were no fluorescent cells in the frozen sections of retina at each time point after lentivirus-mediated GFP gene transduction of EPCs transplantation. Evans blue perfusion angiography could clearly show the structure of retinal capillary network, and fluorescent leakage could be seen in the laser spot of retinal vascular injury model. Two days after transplantation, green fluorescent labeled cells clustered on the retina. One week after transplantation, green fluorescent labeled cells clustered around the laser injury. Four weeks after transplantation, green fluorescent labeled cells formed a similar tubular structure, confirming that EPCs participated in retinal vascular repair.
conclusion
(1) CFSE and Dil-AcLDL are suitable for short-term tracing of EPCs. CFSE has the highest efficiency, the strongest initial fluorescence, the lowest cost, the simplest operation and the advantages of short-term tracing. CFSE labeling EPCs combined with frozen section of retina and Evans blue perfusion retina paving have established a multi-angle observation method for the tracing of EPCs intraocular transplantation. Gene-transduced EPCs have more potential in long-term tracing. (2) Retinal vascular injury model was established by laser photocoagulation in mice, and intraocular transplantation of EPCs was performed by intravitreal injection.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2011
【分類號(hào)】:R774.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙純平,張靜珠,張蕊,曹金霓;視網(wǎng)膜血管性病變的血漿內(nèi)皮素水平變化的探討[J];天津醫(yī)藥;2000年07期
2 王黎明;遠(yuǎn)達(dá)創(chuàng)傷性視網(wǎng)膜血管病變七例[J];中華眼底病雜志;1998年02期
3 封志純;楊軍;;早產(chǎn)兒合理氧療與早產(chǎn)兒視網(wǎng)膜病的預(yù)防[J];實(shí)用兒科臨床雜志;2006年02期
4 朱宣和;;激光與某些視網(wǎng)膜疾患[J];國際眼科縱覽;1979年04期
5 沈珂;盤狀紅斑狼瘡并發(fā)視網(wǎng)膜血管炎一例[J];中華眼底病雜志;1997年02期
6 侯靜,童繹;急性帶狀隱匿性外層視網(wǎng)膜病變[J];國外醫(yī)學(xué).眼科學(xué)分冊;2005年02期
7 趙海廷;茅雙根;;早產(chǎn)兒視網(wǎng)膜病與氧療的關(guān)系[J];中國臨床藥理學(xué)與治療學(xué);2008年05期
8 馬凱,彭曉燕,盧寧,王光璐,張風(fēng);放射性視網(wǎng)膜病變的臨床觀察[J];眼科;2004年01期
9 丁國芳;;早產(chǎn)兒視網(wǎng)膜病及其影響因素[J];實(shí)用兒科臨床雜志;2006年02期
10 闞瑰玲;遠(yuǎn)達(dá)性視網(wǎng)膜病變20例臨床觀察[J];眼科;2003年06期
相關(guān)會(huì)議論文 前10條
1 張含;劉哲麗;張洋;孫鵬;楊德琪;孫昱昭;谷峰;;FLK-1單克隆抗體抑制實(shí)驗(yàn)性視網(wǎng)膜血管新生的實(shí)驗(yàn)研究[A];中國眼底病論壇·全國眼底病專題學(xué)術(shù)研討會(huì)論文匯編[C];2008年
2 賈春月;王波;;雙側(cè)Sturge-Weber綜合征一例[A];中國眼底病論壇·全國眼底病專題學(xué)術(shù)研討會(huì)論文匯編[C];2008年
3 賀杰;;家族性滲出性玻璃體視網(wǎng)膜病變[A];中國眼底病論壇·全國眼底病專題學(xué)術(shù)研討會(huì)論文匯編[C];2008年
4 高磊;王富華;陳寧;東長霞;;視網(wǎng)膜分支靜脈阻塞對(duì)視網(wǎng)膜血管直徑的影響[A];中華醫(yī)學(xué)會(huì)第十二屆全國眼科學(xué)術(shù)大會(huì)論文匯編[C];2007年
5 董麗;張曉梅;穆華;馮卓蕾;;超早期視網(wǎng)膜激光光凝治療缺血性視網(wǎng)膜中央靜脈阻塞的臨床觀察[A];中國眼底病論壇·全國眼底病專題學(xué)術(shù)研討會(huì)論文匯編[C];2008年
6 江睿;甫拉提;陳榮家;王文吉;;細(xì)針穿刺活檢診斷視網(wǎng)膜母細(xì)胞瘤二例[A];中國眼底病論壇·全國眼底病專題學(xué)術(shù)研討會(huì)論文匯編[C];2008年
7 林土勝;賴聲禮;;視網(wǎng)膜血管特征提取的拆支跟蹤法[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號(hào)處理學(xué)術(shù)會(huì)議論文集[C];1999年
8 王玉環(huán);陳超;石文靜;;不同日齡新生小鼠的視網(wǎng)膜血管對(duì)氧療的敏感性[A];第三屆長三角圍產(chǎn)醫(yī)學(xué)學(xué)術(shù)論壇暨2006年浙江省圍產(chǎn)醫(yī)學(xué)學(xué)術(shù)年會(huì)論文匯編[C];2006年
9 王玉環(huán);陳超;石文靜;;不同日齡新生小鼠的視網(wǎng)膜血管對(duì)氧療的敏感性[A];2006(第三屆)江浙滬兒科學(xué)術(shù)會(huì)議暨浙江省兒科學(xué)術(shù)年會(huì)論文匯編[C];2006年
10 楊成明;劉偉;趙燕穎;張麗華;吳雅臻;;人參單體皂苷Rh2抑制缺氧條件下人視網(wǎng)膜血管內(nèi)皮細(xì)胞增生及整合素avβ3表達(dá)的研究[A];中國眼底病論壇·全國眼底病專題學(xué)術(shù)研討會(huì)論文匯編[C];2008年
相關(guān)重要報(bào)紙文章 前10條
1 新華;視網(wǎng)膜自我修復(fù)研究有突破[N];福建科技報(bào);2007年
2 方磊平;鮮為人知的眼中風(fēng)[N];大眾衛(wèi)生報(bào);2007年
3 健康時(shí)報(bào)特約專家 陶海;吸煙者視網(wǎng)膜更易出血[N];健康時(shí)報(bào);2006年
4 遼寧省中醫(yī)藥研究院眼科 左韜;糖尿病性視網(wǎng)膜病變中西結(jié)合療效好[N];衛(wèi)生與生活報(bào);2006年
5 ;血脂增高須防雙目失明[N];醫(yī)藥養(yǎng)生保健報(bào);2006年
6 易善永;關(guān)注早產(chǎn)兒的眼睛[N];中國醫(yī)藥報(bào);2007年
7 本報(bào)記者 白軼南;早期癥狀不重視 待到治療已無望[N];保健時(shí)報(bào);2005年
8 封錫彬;警營,點(diǎn)亮患兒光明之燈[N];北方法制報(bào);2007年
9 張旌;視網(wǎng)膜細(xì)胞可再生,,實(shí)驗(yàn)鼠復(fù)明成功[N];新華每日電訊;2007年
10 聞聲;英國:試驗(yàn)視網(wǎng)膜疾病基因療法[N];中國醫(yī)藥報(bào);2007年
相關(guān)博士學(xué)位論文 前10條
1 石慧;內(nèi)皮祖細(xì)胞眼內(nèi)移植的示蹤及對(duì)視網(wǎng)膜血管損傷修復(fù)的研究[D];吉林大學(xué);2011年
2 張婷;大鼠視網(wǎng)膜血管的電緊張傳導(dǎo)的研究[D];復(fù)旦大學(xué);2011年
3 楊俠;C57小鼠氧誘導(dǎo)模型視網(wǎng)膜的血管形態(tài)學(xué)觀察、基因表達(dá)譜分析和Edn2功能初探[D];青島大學(xué);2011年
4 高玉;microRNA在糖尿病大鼠視網(wǎng)膜中表達(dá)差異譜的研究[D];第二軍醫(yī)大學(xué);2010年
5 鄭麗娟;兩種自發(fā)性視網(wǎng)膜退行性變動(dòng)物的形態(tài)學(xué)研究[D];第四軍醫(yī)大學(xué);2011年
6 馮梅;飽和氫氣生理鹽水對(duì)大鼠視網(wǎng)膜藍(lán)光損傷的保護(hù)作用[D];華中科技大學(xué);2012年
7 王爽;血小板反應(yīng)蛋白-1在小鼠視網(wǎng)膜缺血再灌注損傷中的作用及在糖尿病視網(wǎng)膜病變中的應(yīng)用價(jià)值[D];吉林大學(xué);2012年
8 李佳;2-SeCD對(duì)糖尿病視網(wǎng)膜微血管病變AGEs傳導(dǎo)通路的干預(yù)作用研究[D];吉林大學(xué);2010年
9 金瑋;人臍帶間充質(zhì)干細(xì)胞跨越分化及挽救感光細(xì)胞凋亡的探索研究[D];武漢大學(xué);2011年
10 陳曉菲;視網(wǎng)膜小膠質(zhì)細(xì)胞在糖尿病大鼠視網(wǎng)膜神經(jīng)病變中的作用研究[D];中國人民解放軍軍醫(yī)進(jìn)修學(xué)院;2012年
相關(guān)碩士學(xué)位論文 前10條
1 竇方方;鼠視網(wǎng)膜血管發(fā)育中的內(nèi)皮細(xì)胞轉(zhuǎn)型機(jī)制[D];青島大學(xué);2011年
2 張克劍;pEGFP/Ang-1轉(zhuǎn)染大鼠BMSCs視網(wǎng)膜下移植對(duì)糖尿病大鼠視網(wǎng)膜血管滲漏的影響[D];遼寧醫(yī)學(xué)院;2011年
3 孔維芳;小鼠視網(wǎng)膜片層化及神經(jīng)干細(xì)胞增殖與分化的研究[D];河南大學(xué);2012年
4 程海霞;db/db小鼠早期視網(wǎng)膜神經(jīng)變性觀察[D];南京醫(yī)科大學(xué);2012年
5 石瑜珍;葡萄糖濃度波動(dòng)對(duì)兔視網(wǎng)膜Müller細(xì)胞的作用及可能機(jī)制[D];福建醫(yī)科大學(xué);2012年
6 王淑雅;血紅蛋白載氧體在大鼠視網(wǎng)膜慢性低灌注損傷中對(duì)視網(wǎng)膜的保護(hù)作用[D];天津醫(yī)科大學(xué);2012年
7 黃愉;視網(wǎng)膜上電刺激的三維有限元建模和仿真研究[D];上海交通大學(xué);2013年
8 丁煜;3-氨基苯甲酰胺對(duì)高糖培養(yǎng)的牛視網(wǎng)膜血管內(nèi)皮細(xì)胞增殖的影響[D];安徽醫(yī)科大學(xué);2012年
9 周潔;孕期酒精暴露對(duì)仔鼠視網(wǎng)膜發(fā)育及細(xì)胞凋亡的影響[D];河南大學(xué);2012年
10 侯培;蘋果酸舒尼替尼對(duì)體外培養(yǎng)的恒河猴脈絡(luò)膜視網(wǎng)膜血管內(nèi)皮細(xì)胞增殖和遷移的影響[D];廣西醫(yī)科大學(xué);2010年
本文編號(hào):2246534
本文鏈接:http://sikaile.net/yixuelunwen/yank/2246534.html