天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 醫(yī)學論文 > 眼科論文 >

非綜合征性前庭水管擴大患者拷貝數變異、KCNJ10基因的篩查及基因表達的研究

發(fā)布時間:2018-09-08 16:44
【摘要】: 非綜合征性前庭水管擴大(non-syndromic Enlarged Vestibular Aqueduct,EVA)是一種最常見的內耳畸形,其在感音神經性聾的患者中約占10%左右。臨床表現為學齡前發(fā)病的感音神經性聽力損失,部分患者存在有低頻骨氣導差,表現為混合性聽力損失;其聽力損失從輕度到極重度不等,聽力常呈現波動性或進行性下降,最終達重度或極重度,從而影響語言的學習或正常的交流。前庭水管擴大的患者在聽力下降前常有感冒、發(fā)熱、輕微頭部外傷或其它使顱內壓增高的誘發(fā)因素,因此對于該病的早期發(fā)現、早期診斷、早期干預成為預防或推遲其發(fā)病的有效措施。前庭水管擴大是一種常染色體隱性遺傳性疾病,其與染色體7q31上的SLC26A4基因突變有密切關系。在前庭水管擴大的患者中,約有65-92%的患者可以檢測到該基因的突變。SLC26A4基因屬于陰離子轉運家族,有12個跨膜區(qū),N末端和C末端位于細胞內,表達于甲狀腺、腎臟和內耳。介導硫酸根、碳酸氫根、甲酸根、草酸根、氫氧根、氯、碘及果糖等多種單價或二價的離子的轉運,在機體離子成分平衡的維持中發(fā)揮重要作用。當SLC26A4基因發(fā)生突變后,突變體的蛋白表達及功能均發(fā)生變化,從而導致疾病的發(fā)生。隨著對SLC26A4基因研究的逐漸深入,發(fā)現該基因突變具有很大的異質性:包括基因突變的形式、基因突變發(fā)生的位點及不同種族該基因突變圖譜等均存在有很大的異質性。近年來的研究表明雖然非綜合征性前庭水管擴大和SLC26A4基因突變有密切的關系,但國內外的研究均發(fā)現在相當一部分前庭水管擴大的病人中,未找到SLC26A4基因突變或僅找到一個單等位基因突變。為了明確這部分病人的致病機理;探討其它遺傳因素在這部分病人的耳聾發(fā)病中的作用,本課題研究了拷貝數變異和參與內淋巴鉀離子調節(jié)的基因-KCNJ10基因突變在非綜合征性前庭水管擴大的發(fā)病中的作用。為完善耳聾基因診斷的程序和方法提供依據。同時針對中國人群所特有的SLC26A4突變圖譜,選取了幾種常見的熱點突變,進行了SLC26A4基因突變后的表達研究,以期為進一步探索SLC26A4基因突變的致病分子機制奠定基礎。 第一部分應用MLPA方法對非雙等位基因突變的SLC26A4基因拷貝數變異的篩查 拷貝數變異(CNVs)是指在人類基因組中廣泛存在的,從1000bp到數百萬bp范圍內的缺失、插入、重復和復雜多位點的變異。是近年來發(fā)現的在人類基因組中除SNPs之外,另一類豐富的多態(tài)性來源,CNVs除廣泛存在于正常個體的基因組中,也與染色體重組和一些遺傳性疾病的發(fā)生有密切關系。常規(guī)的一些檢測技術無法檢測到CNVs的存在。 為了解拷貝數變異是否在非綜合征性前庭水管擴大的發(fā)病機制中起作用,本部分研究應用多重連接探針擴增技術(multiplex ligation-dependent probe amplification,MLP A)技術對解放軍總醫(yī)院聾病分子診斷中心所收集到的非綜合征性前庭水管擴大的患者中沒有檢測到SLC26A4基因任何突變及僅檢測到單個等位基因突變的患者進行SLC26A4基因拷貝數變異的篩查,尋找可能存在的致病性的拷貝數變異。在39例未找到SLC26A4基因突變及68例僅找到SLC26A4單等位基因突變的非綜合征性前庭水管擴大的病人中;均未發(fā)現有明顯的拷貝數變異的存在;谠囼灲Y果我們推斷有以下幾種可能:①SLC26A4基因的外顯子中確實不存在有拷貝數變異;因此拷貝數變異不構成非綜合征性大前庭水管擴大的致病機制。②SLC26A4基因中存在有拷貝數的變異,但這些拷貝數變異沒有存在于開放閱讀框架區(qū),而是存在于內含子區(qū)或上、下游的調控區(qū)等部位,用現有的MLPA檢測試劑盒無法檢測到。③在SLC26A4基因周圍或其他對SLC26A4起調控作用的基因中,存在有拷貝數變異,這些拷貝數變異通過改變這些基因的表達或功能,間接地影響SLC26A4基因,從而導致非綜合性前庭水管擴大的出現。 本研究首次將CNVs應用于非綜合征性前庭水管擴大病人的基因篩查,為非綜合征性前庭水管擴大病人的基因診斷提供了一個新的視角,從而完善該病的基因診斷。 第二部分非綜合征性前庭水管擴大患者KCNJ10基因突變的篩查 KCNJ10基因位于人類染色體1q23,編碼一種內向整流性鉀離子通道,主要表達在大腦,內耳和腎臟。在內耳中,KCNJ10基因編碼的鉀離子通道主要表達在血管紋,對于耳蝸電位(EP)的形成起重要作用,血管紋產生耳蝸電位(EP)并向耳蝸內淋巴分泌鉀離子。耳蝸電位是耳蝸轉導電流的主要驅動力量;鉀離子電流是最主要的耳蝸轉導電流。耳蝸轉導電流產生了聽力。KCNJ10突變可以導致耳蝸電位的消失,從而導致聽力的損失。近年來的研究表明在Pendred綜合征和非綜合征性的前庭水管擴大中有KCNJ10基因突變的存在,由此推測KCNJ10基因突變在非綜合征性的前庭水管擴大的發(fā)病機制中起作用。 為了解KCNJ10基因突變是否在非綜合征性前庭水管擴大的發(fā)病機制中起作用,本部分研究對解放軍總醫(yī)院聾病分子診斷中心所收集到的非綜合征性前庭水管擴大的患者進行了KCNJ10基因突變的篩查。在107例攜帶SLC26A4單雜合突變及未檢測到突變的病例中,共檢測到3例KCNJ10基因突變,其中有812 GA雜合突變2例,1042 CT雜合突變1例。在311例已篩查到SLC26A4基因雙等位基因突變(純合突變和復合雜合突變)患者中共篩查到12例KCNJ10突變;其中812GA雜合突變11例;1042CT雜合突變1例。在229例正常人中共篩查到14例KCNJ10突變;其中812GA雜合突變11例,1042CT雜合突變2例,811CT雜合突變1例。對那些帶有SLC26A4雙等位基因突變,同時又帶有KCNJ10基因突變患者的父母進行上述兩個基因的篩查,結果表明其父母中必有一方為同時帶有SLC26A4和KCNJ10單雜合的攜帶者,但是臨床癥狀卻表現正常,既沒有聽力的下降,也沒有前庭水管的擴大。這同國外有關研究的觀點截然不同。根據以上實驗結果我們初步得出以下幾種推論:①KCNJ10的單雜合突變在中國人群中是一種普遍存在的現象;②中國人群中KCNJ10最常見的突變類型是812GA;③KCNJ10雖然在耳蝸電位及聽覺形成過程中起重要作用,但KCNJ10的單雜合突變和Pendred綜合征及非綜合征性前庭水管擴大之間并沒有必然的聯系;④KCNJ10和SLC26A4的復合雜合突變不一定導致Pendred綜合征或非綜合征性前庭水管擴大;對于同時有SLC26A4和KCNJ10基因單雜合突變的非綜合征性前庭水管擴大患者,其致病原因有可能并不是由KCNI10突變引起的,而有可能是由于其他原因,如另一種目前我們尚未知的基因突變或環(huán)境與基因的相互作用引起的。 本研究初步分析了KCNJ10與非綜合征性前庭水管擴大之間的關系,表明了KCNJ10基因突變和非綜合征性前庭水管擴大的發(fā)生沒有必然的聯系,為完善非綜合征性前庭水管擴大的基因診斷提供了依據。 第三部分中國人群中非綜合征性前庭水管擴大患者常見的SLC26A4基因突變的表達研究 SLC26A4基因突變可引起Pendred綜合征或非綜合征性前庭水管擴大。SLC26A4基因突變具有很大的異質性;蛲蛔兊男问,不同種族該基因突變圖譜等均存在有很大的異質性。這些異質性提示SLC26A4突變后其致病的分子機制有可能也存在一定的異質性。中國人群中SLC26A4突變圖譜和世界上其他人群的突變圖譜有著明顯的不同。在中國人群中常見的幾種熱點突變類型是IVS7-2AG; 2168AG (H723R);1174AT (N392Y); 1229CT (T410M);2027TA,而這些突變引起的分子功能改變的具體機制目前為止尚未見報道。因此,本研究即以中國人群中最常見的突變類型為研究對象,構建上述幾種常見的SLC26A4突變質粒,并將其轉染至HEK293細胞中,以觀察其突變發(fā)生后在細胞內的表達情況,結果顯示在本實驗中所選取的四種SLC26A4基因突變發(fā)生后,其編碼的Pendrin蛋白均滯留在細胞質內,而野生型Pendrin蛋白則表達于細胞膜上,由此推測SLC26A4突變發(fā)生后,其編碼的Pendrin蛋白無法定位于胞膜上,而滯留于細胞質內,無法完成正常的陰離子交換功能,從而導致疾病的發(fā)生。本研究明確了中國人群中常見SLC26A4突變類型的蛋白表達,為下一步研究突變體的離子轉運功能的變化奠定了基礎,為采取干預措施,挽救病人的聽力提供可能。
[Abstract]:Non-syndromic Enlarged Vestibular Aqueduct (EVA) is one of the most common inner ear malformations, accounting for about 10% of patients with sensorineural deafness. Patients with enlarged vestibular aqueduct often have a cold, fever, minor head trauma or other predisposing factors that increase intracranial pressure before hearing loss. Vestibular aqueduct enlargement is an autosomal recessive inherited disease closely related to SLC26A4 gene mutation on chromosome 7q31. About 65-92% of patients with vestibular aqueduct enlargement can detect the gene. SLC26A4 gene belongs to the anion transporter family. It has 12 transmembrane domains. The N-terminal and C-terminal domains are located in cells and express in thyroid, kidney and inner ear. As the SLC26A4 gene mutation occurs, the protein expression and function of the mutant change, leading to the occurrence of disease. With the deepening of the study of the SLC26A4 gene, it is found that the mutation has great heterogeneity: including the form of gene mutation, the site of gene mutation and the mutation of the gene in different races. Recent studies have shown that although there is a close relationship between non-syndromic vestibular aqueduct enlargement and SLC26A4 gene mutation, domestic and foreign studies have found that in a considerable number of patients with vestibular aqueduct enlargement, no SLC26A4 gene mutation or only a single allele mutation was found. To clarify the pathogenesis of these patients and to explore the role of other genetic factors in the pathogenesis of deafness in these patients, we studied the role of copy number variation and KCNJ10 gene mutation involved in endolymphatic potassium ion regulation in the pathogenesis of non-syndromic vestibular aqueduct enlargement. At the same time, the expression of SLC26A4 gene mutation was studied by selecting several common hot spot mutations according to the specific mutation map of SLC26A4 gene in Chinese population, in order to lay a foundation for further exploring the molecular mechanism of SLC26A4 gene mutation.
The first part is to screen copy number variation of SLC26A4 gene with non allelic mutation by MLPA.
Copy number variations (CNVs) refer to deletions, insertions, repetitions, and complex multilocus variations that are widespread in the human genome, ranging from 1000bp to millions of bp. CNVs are a rich source of polymorphisms found in recent years in the human genome, in addition to SNPs. CNVs are also widely present in the genome of normal individuals, but also stained. There is a close relationship between body weight and the occurrence of some genetic diseases. Conventional detection techniques can not detect the presence of CNVs.
In order to understand whether copy number variation plays a role in the pathogenesis of non-syndromic vestibular aqueduct enlargement, this part studied the application of multiplex ligation-dependent probe amplification (MLP A) technology to non-syndromic vestibular aqueduct enlargement collected by the Center for Molecular Diagnosis of Deafness in PLA General Hospital. No mutation in the SLC26A4 gene was detected in large patients and only one allele mutation was detected in patients with SLC26A4 gene copy number mutation screening for possible pathogenic copy number mutations. There were no significant copy number variations in patients with enlarged vestibular aqueduct. Based on the results, we concluded that there were several possibilities: (1) There was no copy number variation in the exon of SLC26A4 gene; therefore, copy number variations did not constitute the pathogenesis of non-syndromic enlarged vestibular aqueduct. (2) SLC26A4 gene Copy number variations exist, but these variations do not exist in the open reading frame region, but in the intron region, upstream and downstream regulatory regions, which can not be detected by the existing MLPA detection kits. These copy number variations indirectly affect the SLC26A4 gene by altering the expression or function of these genes, resulting in non-comprehensive vestibular aqueduct enlargement.
In this study, CNVs was used for the first time in gene screening of patients with non-syndromic vestibular aqueduct enlargement, providing a new perspective for gene diagnosis of non-syndromic vestibular aqueduct enlargement, thus improving the genetic diagnosis of the disease.
The second part is the screening of KCNJ10 gene mutation in patients with non syndromic vestibular aqueduct enlargement.
KCNJ10 gene is located on human chromosome 1q23 and encodes an inward rectifier potassium channel, which is mainly expressed in the brain, inner ear and kidney. In the inner ear, KCNJ10 gene encodes potassium channels which are mainly expressed in stria vascularis and play an important role in the formation of cochlear potential (EP). The stria vascularis produces cochlear potential (EP) and secretes to endolymph nodes of the cochlea. Cochlear potential is the main driving force of cochlear conduction current; potassium current is the main conduction current. Cochlear conduction current produces hearing. KCNJ10 mutation can lead to loss of cochlear potential and lead to hearing loss. The mutation of KCNJ10 gene may play a role in the pathogenesis of non-syndromic vestibular aqueduct enlargement.
To understand whether KCNJ10 gene mutation plays a role in the pathogenesis of non-syndromic vestibular aqueduct enlargement, this study screened non-syndromic vestibular aqueduct enlargement patients collected from the Molecular Diagnostic Center for Deafness in PLA General Hospital for mutations in the KCNJ10 gene. Three mutations of KCNJ10 gene were detected, including 812 GA heterozygous mutation in 2 cases and 1 1042 CT heterozygous mutation in 1 case.Twelve KCNJ10 mutations were detected in 311 patients with SLC26A4 gene double allele mutation (homozygous mutation and compound heterozygous mutation); 11 were 812 GA heterozygous mutation; 1 was 1042 CT heterozygous mutation. A total of 14 KCNJ10 mutations were screened in 229 normal subjects, including 11 812GA heterozygous mutations, 2 1042CT heterozygous mutations, and 1 811CT heterozygous mutation. However, the clinical symptoms were normal. There was no hearing loss or vestibular aqueduct enlargement. This is quite different from the viewpoint of foreign studies. Based on the above results, we can draw the following conclusions: 1. The single heterozygous mutation of KCNJ10 is one in Chinese population. (2) The most common mutation type of KCNJ10 in Chinese population is 812GA; (3) Although KCNJ10 plays an important role in cochlear potential and auditory development, there is no necessary association between single heterozygous mutation of KCNJ10 and endred syndrome and non-syndromic vestibular aqueduct enlargement; (4) The combination of KCNJ10 and SLC26A4. Heterozygous mutations do not necessarily lead to Pendred syndrome or non-syndromic vestibular aqueduct enlargement; for non-syndromic vestibular aqueduct enlargement patients with simultaneous single heterozygous mutations in SLC26A4 and KCNJ10 genes, the cause may not be caused by mutations in KCNI10, but by other causes, such as another one that we have not yet identified. The mutation of the known gene or the interaction between the environment and the gene.
This study preliminarily analyzed the relationship between KCNJ10 and non-syndromic vestibular aqueduct enlargement, which indicated that there was no necessary relationship between KCNJ10 gene mutation and non-syndromic vestibular aqueduct enlargement, and provided a basis for improving gene diagnosis of non-syndromic vestibular aqueduct enlargement.
Part III Expression of SLC26A4 gene mutations in non-syndromic vestibular aqueduct enlargement in Chinese population
SLC26A4 gene mutation can cause Pendred syndrome or non-syndromic vestibular aqueduct enlargement. SLC26A4 gene mutation has great heterogeneity. There are great heterogeneity in the form of gene mutation and the mutation map of this gene in different races. These heterogeneity suggest that the molecular mechanism of pathogenesis of SLC26A4 mutation may also exist. The mutation profiles of SLC26A4 in the Chinese population are significantly different from those in other populations in the world. Several hotspot mutation types commonly seen in the Chinese population are IVS7-2AG; 2168AG (H723R); 1174AT (N392Y); 1229CT (T410M); 2027TA, and the specific mechanism of these mutations leading to molecular functional changes is still unknown. Therefore, we constructed the SLC26A4 mutant plasmids and transfected them into HEK293 cells to observe the intracellular expression of the four SLC26A4 mutants selected in this study. It is speculated that the pendrin protein encoded by SLC26A4 can not be localized on the cell membrane after mutation, but can not be retained in the cytoplasm to perform normal anion exchange function, leading to the occurrence of disease. The expression of SLC26A4 mutant protein in Chinese population lays a foundation for the further study of the changes of ion transport function of the mutant, and provides the possibility for intervening measures to save the patient's hearing.
【學位授予單位】:中國人民解放軍軍醫(yī)進修學院
【學位級別】:博士
【學位授予年份】:2010
【分類號】:R764.43

【參考文獻】

相關期刊論文 前1條

1 趙亞麗;王秋菊;蘭蘭;袁虎;關靜;徐百成;縱亮;翟所強;;大前庭水管綜合征家系SLC26A4基因突變分析[J];中華耳科學雜志;2006年04期

相關博士學位論文 前1條

1 袁永一;中國人重度—極重度耳聾分子流行病學及致病機制研究[D];中國人民解放軍軍醫(yī)進修學院;2007年

,

本文編號:2231095

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/yank/2231095.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶a740c***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com