視網(wǎng)膜色素變性T17M視紫紅質(zhì)突變誘導(dǎo)細(xì)胞死亡的機(jī)制研究
[Abstract]:Chapter 1 subcellular localization of rhodopsin T17M mutant
Objective: To study the subcellular localization and significance of rhodopsin T17M mutant.
Methods: pCDNA-3.1-T17M rhodopsin-myc plasmids and pCDNA-3.1-WT rhodopsin-myc plasmids were constructed and identified by EcoR I and BamH I double enzyme digestion and gene sequencing. The constructed plasmids were transfected into HEK293 cells, and Western blot was used to detect the differences in the expression of rhodopsin T17M mutants and wild type proteins. Immunofluorescence microscopy was used. Subcellular localization of rhodopsin T17M mutant and wild type was observed.
Results: after PCR amplification and double enzyme digestion, the 1000bp size bands were obtained. Gene sequencing showed that fiftieth base C was transformed into T, and pCDNA-3.1-T17M rhodopsin-myc plasmids and pCDNA-3.1-WT rhodopsin-myc plasmids were successfully constructed. After plasmid transfection, Western blot detected approximately 40KD bands. The transfection could efficiently express rhodopsin T17M mutation The fluorescence microscope showed that the T17 mutant of rhodopsin was clustered in the endoplasmic reticulum, and there was no co location with the Golgi body, while the wild type was mainly in the cell membrane.
Conclusion: the rhodopsin T17M mutant is located in the endoplasmic reticulum and has no co localization with Golgi apparatus. The rhodopsin type is mainly located in the cell membrane.
The second chapter of degradation pathway of rhodopsin T17M mutant
Objective: To study the degradation pathway and significance of rhodopsin T17M mutant.
Methods: MTT method was used to detect the T17M mutant of rhodopsin and the degradation rate of wild type.Western blot to detect the effect of lysosome inhibitor CQ and proteasome inhibitor MG132 on the degradation of rhodopsin T17M mutants and wild type. Immunoprecipitating detection of.Western blot detection p97/VCP-QQ (?) Erasin siRNA against rhodopsin The half-life of T17M mutant and wild type of purplish red.
Results: after the protein synthesis inhibitor CHX treated the HEK293 cells and ARPE-19 cells 6h, the CHX treated rhodopsin was labeled as 1, the relative values of the rhodopsin T17M mutants and the wild type proteins were 0.219 + 0.032 and 0.635 + 0.072 (P0.01) respectively, and the relative values of the rhodopsin T17M mutants of ARPE-19 cells and the relative values of the wild type proteins in ARPE-19 cells were divided. Don't be 0.302 + 0.041 and 0.531 + 0.052 (P0.01). After the lysosome inhibitor CQ treated HEK293 cell 12h, the T17M mutant of the rhodopsin increased from 1 to 1.023 + 0.265, and the relative value of the rhodopsin wild type protein increased from 1 to 1.433 + 0.159 (P0.05). After the proteasome inhibitor MG132 was L rational HEK293 cell 6h, the T17M mutant of the rhodopsin increased from 1 to 7.21. 3 + 2.108 (P0.01), the relative value of rhodopsin wild type protein increased from 1 to 2.011 + 0.221 (P0.05). After immunoprecipitation, the ubiquitination rhodopsin T17M mutant was increased from 1 to 2.200 + 0.361 (P0.01), and the relative value of wild type protein increased from 1 to 1.160 + 0.162. in ARPE-19 cells, and the control group and p97/VCP-QQ group of rhodopsin The relative values of the qualitative T17M mutant proteins were 0.159 + 0.052 and 0.558 + 0.095 (P0.01).Erasin siRNA respectively. The relative values of the Erasin siRNA group of the control group of the rhodopsin T17M mutant were 0.230 + 0.059 and 0.602 + 0.064 (P0.01), respectively, while the degradation rate of the rhodopsin wild type was not significantly changed.
Conclusion: compared with the wild type of rhodopsin, the degradation of T17M mutant is accelerated. The T17M mutant of rhodopsin can be degraded only through the proteasome system, while the wild type can be degraded by autophagosome system and proteasome system. The degradation of the T17M mutant of the rhodopsin is related to the ERAD of the ubiquitination. P97/VCP-QQ and Erasin siRNA are overexpressed by over expression of the mutant of the rhodopsin. Disturbance can inhibit the degradation of rhodopsin T17M mutant via ERAD pathway.
The third chapter is about the mechanism of cell death induced by T17M mutation of rhodopsin.
Objective: To study the mechanism of cell death induced by T17M mutation of rhodopsin.
Methods: the pEGFP-CL1-ARPE-19 cell line was established and the activity of proteasome was detected by Western blot. Overexpression of rhodopsin, induced endoplasmic reticulum stress reaction, and Western blot method was used to detect the expression difference of endoplasmic reticulum stress related protein BIP, GRP94, CHOP, peIF-2a, eIF-2a, active ATF-6a. The expression of stress related protein in the endoplasmic reticulum was affected by.Tunicamycin treatment of ARPE-19 cells, the number of cell deaths was detected by flow cytometry. The T17M mutant of rhodopsin was overexpressed. The level of intracellular ROS was detected by flow cytometry, and the ROS scavenger NAC and BHA were used to observe the change of cell death.
Results: pEGFP-CL1-ARPE-19 cell lines can express uGFP, T17M mutation of rhodopsin, and there is no significant change in the expression of uGFP in the wild type,.T17M mutation can make the cell endoplasmic reticulum stress protein BIP, GRP94, CHOP, peIF-2a, eIF-2a, active ATF-6a, compared with the wild type of rhodopsin The amount increased by 2.439 + 0.363 times (P0.01), 2.433 + 0.802 times (P0.01), 1.600 + 0.212 times (P0.05), 1.567 + 0.153 (P0.05), 2.167 + 0.306 times (P0.01). Compared with the wild type of rhodopsin, the expression of CHOP increased by 2.600 + 0.854 times and 1.467 + 1.600 times (P0.05) before and after PBA treatment, and the GRP94 expression was increased before and after the treatment. It was 1.203 + 0.239 times (P0.05), peIF-2a/eIF-2a was 1.733 + 0.154 times and 1.167 + 0.252 times (P0.05), active ATF-6a was 2.564 + 0.406 times and 1.349 + 0.529 times (P0.05). And the ARPE-19 cell death rate was 4.156% + 0.501% and 4.8 by using endoplasmic reticulum stress inducer before and after Tunicamycin. 14% + 0.531%, 3.879% + 0.413% and 5.712% + 0.574%, 7.021% + 0.612% and 16.213% + 3.419%, the overexpressed cell mortality of the rhodopsin T17M mutant was significantly higher than that of the empty vector and the wild type (P0.05). Compared with the no-load group, the relative ratio of the rhodopsin wild type and the rhodopsin T17M mutant ROS was respectively (P0.01) + 0.088 (P0.01). After the use of ROS scavenger NAC and BHA, the mortality of the unloaded body group, the DMSO group, the NAC group and the BHA group were 3.716% + 0.523%, 7.322% + 1.924%, 4.857% + 1.369% (compared to the DMSO group, P0.05) and 4.271% + 0.988% (compared to the DMSO group, P0.01).
Conclusion: T17M mutation of rhodopsin does not affect the.T17M mutation of proteasome activity can induce endoplasmic reticulum stress and up-regulated expression of BIP, GRP94, CHOP, peIF-2a, eIF-2a, active ATF-6a expression of endoplasmic reticulum stress protein. Chemical chaperone PBA can alleviate the T17M induced endoplasmic reticulum stress. Rhodopsin T17M mutation increases the induction of endoplasmic reticulum stress induced by the rhodopsin T17M mutation The sensitivity of the agent Tunicamycin. Mutant T17M rhodopsin increased the level of ROS in cells. ROS scavenger NAC and BHA could inhibit cell death caused by T17M mutation of rhodopsin.
【學(xué)位授予單位】:中南大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:R774.13
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 邢明照;朱妙章;劉海春;王曉武;李宏偉;盧成哲;;甲醇對(duì)蟾蜍視紫紅質(zhì)的分解作用[J];中國(guó)應(yīng)用生理學(xué)雜志;1989年04期
2 Jose Garrofe;徐經(jīng)采;;在暗環(huán)境中缺鋅鼠眼中已漂白的視紫紅質(zhì)的再生[J];微量元素;1988年02期
3 李玉棟,孫騫,張春平,富光華,魯銳,張光寅;細(xì)菌視紫紅質(zhì)膜非線性吸收特性及其光子學(xué)應(yīng)用[J];光學(xué)學(xué)報(bào);1999年05期
4 崔之礎(chǔ),楊玲,張冬雷,管懷進(jìn),白沂濤;視網(wǎng)膜色素變性視紫紅質(zhì)部分基因序列檢測(cè)[J];陜西醫(yī)學(xué)檢驗(yàn);2000年04期
5 容維寧;盛迅?jìng)?莊文娟;;常染色體顯性遺傳視網(wǎng)膜色素變性家系視紫紅質(zhì)基因突變分析[J];國(guó)際眼科雜志;2006年05期
6 費(fèi)一堅(jiān);羅成仁;黃永志;;常染色體顯性遺傳視網(wǎng)膜色素變性視紫紅質(zhì)基因突變的檢測(cè)[J];中華醫(yī)學(xué)遺傳學(xué)雜志;1992年06期
7 馬曉曄,魏銳利,蔡季平,朱莉;常染色體顯性視網(wǎng)膜色素變性家系基因定位的研究與視紫紅質(zhì)基因突變的檢測(cè)分析[J];中國(guó)實(shí)用眼科雜志;2002年07期
8 萬(wàn)新民;;形形色色的電視病[J];職業(yè)與健康;1990年02期
9 馬曉曄,魏銳利,蔡季平,朱莉;常染色體顯性視網(wǎng)膜色素變性家系視紫紅質(zhì)基因突變的檢測(cè)分析[J];中華眼底病雜志;2002年04期
10 李華;;“鬼打墻”與“雀盲眼”[J];科技致富向?qū)?2000年03期
相關(guān)會(huì)議論文 前5條
1 盧春林;韋玨;葉宣;趙淑珍;田波;;生物電子材料細(xì)菌視紫紅質(zhì)外源合成系統(tǒng)的建立[A];首屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];1992年
2 楊群;趙有源;龔勤敢;李富銘;劉堅(jiān);李慶國(guó);;脈沖激光對(duì)細(xì)菌視紫紅質(zhì)的瞬態(tài)光電荷轉(zhuǎn)移動(dòng)力學(xué)研究[A];第七屆全國(guó)生物膜學(xué)術(shù)討論會(huì)論文摘要匯編[C];1999年
3 滕雪雷;陸明;趙有源;;細(xì)菌視紫紅質(zhì)的光致非線性吸收[A];中國(guó)遺傳學(xué)會(huì)第十屆全國(guó)激光生物學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2009年
4 王友亮;曹軍衛(wèi);;遺傳修飾對(duì)細(xì)菌視紫紅質(zhì)的優(yōu)化[A];第二屆中國(guó)青年學(xué)者微生物遺傳學(xué)學(xué)術(shù)研討會(huì)論文集[C];2006年
5 陳桂英;張春平;許旭旭;;全光光子延時(shí)器延遲時(shí)間與細(xì)菌視紫紅質(zhì)參量的依賴關(guān)系(英文)[A];2007年全國(guó)第十六屆十三省(市)光學(xué)學(xué)術(shù)會(huì)議論文集[C];2007年
相關(guān)重要報(bào)紙文章 前10條
1 徐波;眼睛需要哪些營(yíng)養(yǎng)素[N];醫(yī)藥養(yǎng)生保健報(bào);2007年
2 曉凱;電腦保養(yǎng)與用機(jī)衛(wèi)生[N];吉林日?qǐng)?bào);2000年
3 程柱生;常飲茶可保護(hù)視力[N];保健時(shí)報(bào);2004年
4 李杰;肝病患者少看電視[N];大眾衛(wèi)生報(bào);2005年
5 宋新;夜班族多補(bǔ)點(diǎn)維A[N];健康時(shí)報(bào);2007年
6 金文泉 資深醫(yī)學(xué)教授、科普作家,,澳大利亞昆士蘭大學(xué)高級(jí)訪問(wèn)學(xué)者;“萬(wàn)能”博士與陽(yáng)光維生素[N];中國(guó)食品報(bào);2012年
7 湖南省腫瘤醫(yī)院 唐文;服用哪些藥物要禁酒[N];大眾衛(wèi)生報(bào);2002年
8 陶海 李曉瑩;眼睛喜歡“吃”什么[N];中國(guó)醫(yī)藥報(bào);2006年
9 欣聞;呵護(hù)心靈之窗哪些營(yíng)養(yǎng)物質(zhì)不可缺?[N];中國(guó)食品報(bào);2009年
10 江西省人民醫(yī)院眼科 教授 羅興中;吃魚(yú)肝油能補(bǔ)眼睛和保護(hù)視力嗎[N];家庭醫(yī)生報(bào);2003年
相關(guān)博士學(xué)位論文 前2條
1 江海波;視網(wǎng)膜色素變性T17M視紫紅質(zhì)突變誘導(dǎo)細(xì)胞死亡的機(jī)制研究[D];中南大學(xué);2014年
2 王寧;海洋微生物中變形菌視紫紅質(zhì)(Proteorhodopsin)結(jié)構(gòu)和功能的研究[D];南京農(nóng)業(yè)大學(xué);2011年
相關(guān)碩士學(xué)位論文 前8條
1 馮曉強(qiáng);基于細(xì)菌視紫紅質(zhì)光致變色特性的原型器件研究[D];西北大學(xué);2000年
2 肖燁;細(xì)菌視紫紅質(zhì)結(jié)構(gòu)與功能的固體核磁共振研究[D];華東師范大學(xué);2012年
3 楊文正;納米生物材料細(xì)菌視紫紅質(zhì)的光吸收與光調(diào)制特性及其應(yīng)用研究[D];中國(guó)科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2003年
4 劉偉民;細(xì)菌視紫紅質(zhì)高分辨圖像存儲(chǔ)的實(shí)驗(yàn)研究[D];西北大學(xué);2001年
5 祁春媛;菌紫質(zhì)分子組裝膜制備及其非線性光學(xué)性能研究[D];華東師范大學(xué);2006年
6 王震;荷電脂質(zhì)對(duì)重組細(xì)菌視紫紅質(zhì)蛋白活性的影響[D];上海交通大學(xué);2007年
7 馬曉曄;常染色體顯性視網(wǎng)膜色素變性基因定位的研究與視紫紅質(zhì)基因突變的檢測(cè)[D];第二軍醫(yī)大學(xué);2001年
8 詹偉;細(xì)菌視紫紅質(zhì)質(zhì)子傳輸機(jī)制的固體核磁共振研究[D];華東師范大學(xué);2011年
本文編號(hào):2133565
本文鏈接:http://sikaile.net/yixuelunwen/yank/2133565.html