小耳畸形患者的畸形解剖研究及聽(tīng)力重建術(shù)中鼓膜材料的有限元分析
本文選題:小耳畸形 + 畸形解剖�。� 參考:《中國(guó)協(xié)和醫(yī)科大學(xué)》2010年博士論文
【摘要】: 目的 通過(guò)對(duì)先天性小耳畸形患者外、中耳的畸形解剖學(xué)特征的系統(tǒng)研究,比較其與正常解剖之間的差異,總結(jié)重要解剖結(jié)構(gòu)的變異規(guī)律及相互關(guān)系。完善臨床診斷分型,指導(dǎo)手術(shù),為耳廓再造和聽(tīng)力重建的序列治療提供治療依據(jù)。并通過(guò)三維有限元方法分析了聽(tīng)力重建術(shù)后小耳畸形伴發(fā)CAA患者的聲波力學(xué)改變,從生物力學(xué)的角度重點(diǎn)分析鼓膜材料,得出最佳人工鼓膜材料的選擇趨勢(shì)。 材料和方法 1研究對(duì)象 選取2009年6月~2009年12月期間,中國(guó)醫(yī)學(xué)科學(xué)院整形外科醫(yī)院外耳整形中心和中國(guó)人民解放軍總醫(yī)院耳鼻咽喉科住院診斷為小耳畸形的患者,采用自身對(duì)照研究。研究組50耳,其中單側(cè)畸形22例,22耳(右耳14耳,左耳8耳),雙側(cè)畸形14例,28耳,年齡3~28歲,平均年齡12.44歲。對(duì)照組為單側(cè)畸形之健耳22例,22耳(右耳8耳,左耳14耳)。所有病例既往無(wú)中耳、乳突手術(shù)史,排除后天性畸形、伴外中耳畸形的相關(guān)綜合征。 2研究方法 2.1采用東芝Aquilion16層螺旋CT行顳骨高分辨掃描。掃描參數(shù):層厚0.5mm,135kV,250mA, pitch11.0, speed5.50mm/rot。以聽(tīng)眶上線為基線行常規(guī)軸位掃描。重建參數(shù):層厚0.4mm, inernal值2.0mm,窗寬3584HU,窗位600HU。 原始影像資料導(dǎo)入Mimics軟件,生成冠狀位、矢狀位圖像及三維重建圖像。利用軟件自帶的測(cè)量工具,進(jìn)行距離和角度的測(cè)量。 2.2評(píng)價(jià)指標(biāo) 2.2.1耳廓分級(jí):根據(jù)耳廓畸形情況,采用Max分級(jí)。 2.2.2外耳道:根據(jù)外耳道畸形情況,分為外耳道骨性閉鎖、骨性狹窄及膜性閉鎖、膜性狹窄。 2.2.3鼓室:在軸位圖像上測(cè)量鼓室的前后徑、左右徑;在冠位圖像上測(cè)量對(duì)照組各個(gè)鼓室上下徑,測(cè)量研究組鼓室的上下徑。 2.2.4在冠位圖像上測(cè)量閉鎖/狹窄表面到上、中、下鼓室及聽(tīng)骨表面的距離。在軸位圖像上測(cè)量閉鎖/狹窄表面到鼓竇外側(cè)壁內(nèi)面、鼓竇外側(cè)壁內(nèi)面到外半規(guī)管隆突的距離。 2.2.5定量測(cè)量如下參數(shù):測(cè)量顳下頜關(guān)節(jié)窩后表面到鼓竇入口的距離、顳下頜關(guān)節(jié)窩后表面到鼓室的距離、咽鼓管鼓口和鼓竇入口的距離、咽鼓管徑、前庭導(dǎo)水管遠(yuǎn)端內(nèi)徑、前庭、乙狀竇、鼓室外側(cè)壁與乳突外側(cè)骨皮質(zhì)之間的距離、蒲氏間隙、內(nèi)聽(tīng)道長(zhǎng)、內(nèi)耳門(mén)長(zhǎng)徑。 2.2.6定性觀察如下結(jié)構(gòu):顱中窩、鼓室天蓋、硬腦膜、頸靜脈球、頸動(dòng)脈、Korner隔、乳突。 2.2.7結(jié)合多方向調(diào)整MPR技術(shù),并在Mimics軟件上重建FN管,參考Takegosh的方法,以直角坐標(biāo)系描述面神經(jīng)的走行,并測(cè)量相關(guān)參數(shù)。進(jìn)一步觀察面神經(jīng)與前庭窗的關(guān)系,并測(cè)量前庭窗至鼓室段的最短距離、蝸窗至乳突段的距離。 2.2.8聽(tīng)小骨:分別于軸位和冠位耳蝸、前庭窗二個(gè)層面上識(shí)別聽(tīng)小骨形態(tài),予以分類(lèi)。 2.3統(tǒng)計(jì)學(xué)分析 采用統(tǒng)計(jì)分析軟件SPSS17.0 for windows.兩組之間的比較采用t檢驗(yàn)/秩和檢驗(yàn),多組之間的比較采用方差分析/K-W檢驗(yàn)(Kruskal-Wallis Test),兩兩之間的比較采用SNK;分類(lèi)變量的描述采用頻數(shù)和百分比,兩組或多組之間的比較采用卡方檢驗(yàn)(x2檢驗(yàn))。假設(shè)檢驗(yàn)結(jié)果均以P<=0.05認(rèn)為差異有統(tǒng)計(jì)學(xué)意義。 2.4選取單側(cè)小耳畸形伴發(fā)CAA患者一例,對(duì)其進(jìn)行CT掃描獲取顳骨數(shù)據(jù),進(jìn)行前處理后導(dǎo)入有限元分析軟件Ansya,建立健耳和小耳畸形患者聽(tīng)力重建術(shù)后的三維有限元模型,并予以人造鼓膜不同的彈性模量。模擬聲波傳導(dǎo),得到鼓膜處的聲波力學(xué)改變數(shù)據(jù)。 結(jié)果 1小耳畸形患者以Max分型,設(shè)立研究組,定量參數(shù)中的鼓室前后徑、鼓室上下徑、顳下頜關(guān)節(jié)窩后表面到鼓竇入口的距離、乙狀竇的深、乙狀竇的寬、FL(代表顳骨乳突部的發(fā)育情況),定性參數(shù)中的乳突氣化程度、乳突氣化類(lèi)型的分布率,面神經(jīng)遮蓋前庭的發(fā)生率、在研究組與對(duì)照組間存在統(tǒng)計(jì)學(xué)差異。 2.通過(guò)對(duì)小耳畸形患者聽(tīng)力重建術(shù)的模擬及有限元分析,可以看到,其最大位移在再造鼓膜與聽(tīng)小骨連接處,最小位移在砧骨體,最大壓強(qiáng)在再造外耳道外側(cè)端,最小壓強(qiáng)在聽(tīng)小骨內(nèi)側(cè)端,認(rèn)為患耳術(shù)后的聲波力學(xué)特性與健耳基本相同。選擇人造鼓膜材料時(shí),彈性模量大于100Mpa,小于500Mpa,并盡量使彈性模量較大時(shí),更有助于患耳的聽(tīng)力改進(jìn)。 結(jié)論 小耳畸形患者的鼓室、顳下頜關(guān)節(jié)窩、乙狀竇、及面神經(jīng)的部分形態(tài)與正常耳存在明顯的差異,因畸形程度的不同而有所變化,與Max分型有一定相關(guān)性。 三維有限元分析結(jié)果顯示患耳術(shù)后的聲波力學(xué)特性與健耳基本相同。聽(tīng)力重建術(shù)時(shí)再造鼓膜,材料的彈性模量應(yīng)在100Mpa到500Mpa之間。
[Abstract]:Purpose
Through a systematic study of the anatomic features of congenital microtia , the differences between normal anatomy and normal anatomy were compared , and the variation law and correlation of important anatomical structures were summarized . The clinical diagnosis typing and guided surgery were used to provide the therapeutic basis for the sequence therapy of auricle reconstruction and hearing reconstruction .
Materials and Methods
1 Study Object
During the period from June 2009 to December 2009 , the external ear shape center of the General Hospital of Chinese Academy of Medical Sciences and the General Hospital of the People ' s Liberation Army ( PLA General Hospital ) were diagnosed as small - ear deformity patients . The study group was 50 ears , including 22 cases of unilateral deformity , 22 ears ( 14 ears in the right ear , 8 ears in left ear ) , 14 cases of bilateral deformity , 28 ears , 3 - 28 years of age and 12 . 44 years of mean age . All cases had no previous middle ear , history of mastoid surgery , elimination of acquired deformity , and associated syndrome with external middle ear deformity .
2 Study Methods
2.1 The scanning parameters were 0.5 mm , 135 kV , 250 mA , 11 . 0 , speed5 . 50 mm / rot . The parameters were as follows : layer thickness 0.4 mm , inernal value 2.0 mm , window width 3584HU , and window position 600HU .
Raw image data is imported into Mimics software to generate coronal , sagittal and three - dimensional reconstruction images . Distance and angle measurements are performed using the software ' s own measuring tool .
2.2 Evaluation Indicators
2.2 . 1 Auricular classification : According to the deformity of auricle , Max classification is adopted .
2.2 . 2 External ear canal : According to the condition of external auditory canal deformity , it is divided into external auditory canal bone atresia , ostenosis and membranous atresia , and membranous stenosis .
2.2 . 3 tympanometry : Measure the front and rear diameter and left and right diameter of the drum on the axial image ;
Measure the upper and lower diameter of each drum in the control group on the coronal image , and measure the upper and lower diameters of the tympanum of the study group .
2.2 . 4 Measure the distance between the locking / narrow surface on the coronal image to the upper , middle , lower and auditory surfaces . Measure the distance between the locking / narrow surface to the inner surface of the lateral wall of the outer wall of the drum sinus and the inner surface of the outer wall of the drum sinus to the external semicircular canal on the axial image .
2.2 . 5 The following parameters were quantitatively measured : the distance from the posterior surface of the joint fossa to the entrance of the drum sinus , the distance between the posterior surface of the tympanic tube and the entrance of the drum sinus , the diameter of the pharyngeal tube , the inner diameter of the distal end of the vestibular aqueduct , the anterior chamber , the sigmoid sinus , the distance between the lateral wall of the tympanic cavity and the outer cortical cortex of the mastoid process , the Pu ' s gap , the length of the inner ear canal and the length of the inner ear .
2.2 . 6 The following structures were qualitatively observed : cranial fossa , tympanoplasty , dura , jugular bulb , carotid artery , Korner septum , mastoid process .
2.2 . 7 In combination with multi - direction adjustment of MPR technique , and reconstruct FN tube on Mimics software , refer to the method of Takeoff . The relationship between facial nerve and vestibular window was further observed and the shortest distance between vestibular window and vestibular section was measured . The distance between vestibular window and mastoid segment was measured .
2.2 . 8 To listen to the bone : identify the morphology of the auditory cortex at the two levels of the axial and coronal cochlea , vestibular window , and classify them .
2.3 Statistical Analysis
Statistical analysis software SPSS 17.0 for windows was used . The comparisons between the two groups were t - test / rank and test , and the comparisons between the two groups were analyzed by means of variance analysis / K - W test ( Kruskal - test ) , and SNK was used between the two groups .
The frequency and percentage of the classification variables were used , and the Chi - square test ( x2 test ) was adopted for the comparison between the two groups or groups .
2.4 One case of unilateral small - ear malformation with CAA was selected , the temporal bone data were acquired by CT scanning , and the three - dimensional finite element model was introduced into the finite element analysis software Ansya after the pre - treatment , and the elastic modulus of the artificial tympanic membrane was established . The acoustic wave conduction was simulated to obtain the acoustic wave mechanics change data at the tympanic membrane .
Results
There was statistical difference between the study group and the control group .
2 . Through the simulation and finite element analysis of the hearing reconstruction of patients with small ear deformity , it can be seen that the maximum displacement is at the juncture of the reconstructed tympanic membrane and the icular bone , the minimum displacement is at the outer end of the reconstructed external auditory canal , the minimum pressure is the same as that of the ear . When the artificial tympanic membrane is selected , the elastic modulus is greater than 100Mpa , less than 500Mpa , and the hearing improvement of the ear is more helpful when the elastic modulus is larger .
Conclusion
There was a significant difference between the partial morphology and the normal ear of the tympanic membrane , the temporo - mandibular joint fossa , the sigmoid sinus and the facial nerve in the patients with small ear deformity .
The results of three - dimensional finite element analysis showed that the mechanical properties of the acoustic wave were almost the same as that of the healthy ear , and the elastic modulus of the reconstructed tympanic membrane and the material should be between 100Mpa and 500Mpa .
【學(xué)位授予單位】:中國(guó)協(xié)和醫(yī)科大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2010
【分類(lèi)號(hào)】:R764
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鐘時(shí)勛;劉兆華;李朝軍;;先天性小耳畸形及外耳道閉鎖的手術(shù)治療[J];重慶醫(yī)學(xué);2006年06期
2 劉兆會(huì);王振常;鮮軍舫;趙坤;章宏;;顳骨解剖變異的高分辨率CT研究[J];中國(guó)耳鼻咽喉頭頸外科;2006年02期
3 王冰,王振常,鮮軍舫;內(nèi)聽(tīng)道區(qū)的正常影像解剖[J];國(guó)外醫(yī)學(xué).耳鼻咽喉科學(xué)分冊(cè);2004年06期
4 戴培東,張?zhí)煊?王克強(qiáng),賈劍國(guó);乙狀竇、頸靜脈球及面神經(jīng)位置變化的相關(guān)性分析[J];中國(guó)局解手術(shù)學(xué)雜志;2001年04期
5 張美超,鐘世鎮(zhèn);國(guó)內(nèi)生物力學(xué)中有限元的應(yīng)用研究進(jìn)展[J];解剖科學(xué)進(jìn)展;2003年01期
6 張榮漢;尹保國(guó);譚衛(wèi)平;湯志純;;乙狀竇位置變異和顱中凹下垂的解剖學(xué)調(diào)查[J];臨床耳鼻咽喉科雜志;1989年03期
7 宋光義,韓丹,劉俊華,江超武,李玉小,廖承德;面神經(jīng)管變異的多層螺旋CT曲面重建與解剖對(duì)照研究[J];臨床耳鼻咽喉科雜志;2005年16期
8 楊曉玲,鄭小華,童士平;CT中耳仿真內(nèi)鏡的臨床應(yīng)用初探[J];臨床放射學(xué)雜志;2000年12期
9 唐作華,錢(qián)雯,宋濟(jì)昌,周康榮;耳部正常解剖結(jié)構(gòu)的CT數(shù)據(jù)測(cè)量[J];臨床放射學(xué)雜志;2004年07期
10 肖家和;羅敏;劉暢;魏懿;鄒翎;李真林;歐陽(yáng)禮;;外中耳先天畸形的HRCT研究[J];臨床放射學(xué)雜志;2007年01期
,本文編號(hào):2118582
本文鏈接:http://sikaile.net/yixuelunwen/yank/2118582.html