基于小波變換的心電信號P波分析研究及其FPGA實現(xiàn)
本文選題:心電信號 + 小波變換; 參考:《吉林大學》2015年碩士論文
【摘要】:心臟病發(fā)病率高、突發(fā)性強并且病情隱蔽,死亡率一直居高不下,已然成為危害人們健康的重要疾病。目前對心臟疾病的處理手段一般是初步診斷、積極預防、及時治療,因此對心電信號分析研究具有很高的臨床價值。心電信號是一種極易受環(huán)境影響的非線性的微弱信號,而且常夾雜各種噪聲干擾,增加了分析診斷的難度,因此提高心電分析檢測系統(tǒng)的精度和準確性顯得十分必要。 本文主要研究了心電信號P波的提取及其在FPGA上的檢測系統(tǒng)的實現(xiàn)。 對于P波的提取,利用雙正交的二次B樣條小波作為基函數(shù),對心電信號進行4層分解,根據(jù)第4層小波系數(shù)確定R波檢測閾值MAX和P波檢測閾值MIN,在大于MIN和小于MAX的區(qū)間內(nèi)檢測模極值對,根據(jù)奇異點原理,正負模極大值點的過零點即為P波的波峰。 由于FPGA可以反復編程、集成度高、功耗低的優(yōu)點,本文基于Atera公司的Cyclone II系列EP2C35F672C8核心芯片,利用Matlab和QuatusII等軟件和VHDL、Verilog語言編寫程序來設計P波檢測模塊。P波檢測系統(tǒng)分為小波變換模塊和檢測模塊兩個部分,小波變換模塊對心電信號進行4層分解,每一層的低頻系數(shù)輸出都是下一層的輸入,從而得到了第4層上的小波系數(shù);檢測模塊利用R波檢測的閾值MAX和P波檢測的閾值MIN,在大于MIN和小于MAX的區(qū)域內(nèi)檢測P波的正負模極大值點,根據(jù)小波奇異點原理,正負模極大值點的過零點即為P波的波峰。對48組心電數(shù)據(jù)進行了仿真驗證,通過Matlab和QuatusII實驗結(jié)果的分析表明,本文的檢測方法能很好的檢測出P波,,并且功耗較低,能實時的運行。
[Abstract]:The incidence of heart disease is high, sudden and hidden, mortality has been high, has become an important disease endangering people's health. At present, the treatment of heart disease is generally preliminary diagnosis, active prevention, timely treatment, so ECG analysis has a high clinical value. Electrocardiogram (ECG) is a kind of nonlinear weak signal which is easily affected by environment, and it is often mixed with various kinds of noise interference, which makes it more difficult to analyze and diagnose. Therefore, it is necessary to improve the accuracy and accuracy of ECG analysis and detection system. This paper mainly studies the extraction of ECG P wave and the realization of detection system on FPGA. For P-wave extraction, the biorthogonal quadratic B-spline wavelet is used as the basis function to decompose the ECG signal into four layers. The R wave detection threshold Max and P wave detection threshold MINM are determined according to the 4th layer wavelet coefficients, and the mode extremum pairs are detected in the interval larger than min and less than Max. According to the singular point principle, the zero crossing point of positive and negative modulus maximum is the peak of P wave. Due to the advantages of repeated programming, high integration and low power consumption, this paper is based on Cyclone II series EP2C35F672C8 core chip of Atera. The software of Matlab and Quatus II and the program written by VHDL Verilog language are used to design the P-wave detection module. The P-wave detection system is divided into two parts: the wavelet transform module and the detection module. The wavelet transform module decomposes the ECG signal into four layers. The output of the low frequency coefficients of each layer is the input of the next layer, thus the wavelet coefficients on the fourth layer are obtained. The detection module uses R wave detection threshold Max and P wave detection threshold MINN to detect the positive and negative modulus maximum of P wave in the region larger than min and less than Max. According to the principle of wavelet singular point, the zero crossing point of positive and negative modulus maximum point is the peak of P wave. 48 groups of ECG data are simulated and verified. The results of Matlab and Quatus II experiments show that this method can detect P wave very well, and the power consumption is low and can run in real time.
【學位授予單位】:吉林大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:R541;TN911.7;TN791
【參考文獻】
相關(guān)期刊論文 前10條
1 楊海威,詹永麒,胡偉國,夏恒超,閆潤強,張永紅;12導聯(lián)心電圖P波檢測算法[J];北京生物醫(yī)學工程;2002年02期
2 夏恒超,詹永麒,陳旭華;基于小波變換和波形信息的P波檢測方法[J];北京生物醫(yī)學工程;2003年01期
3 楊永明;韋建敏;劉俊剛;黃曉博;;基于FPGA的實時心電監(jiān)護系統(tǒng)設計[J];電子技術(shù)應用;2007年07期
4 季虎;孫即祥;王春光;;基于小波變換的自適應QRS-T對消P波檢測算法[J];電子與信息學報;2007年08期
5 段芳;徐亮;黃新;;人工神經(jīng)網(wǎng)絡在醫(yī)學中的應用[J];九江醫(yī)學;2008年02期
6 段靖芳;郝瑩;;基于小波變換和神經(jīng)網(wǎng)絡的心電信號P波檢測[J];生物醫(yī)學工程研究;2005年04期
7 王笑梅,王輝;基于小波的ECG信號噪聲消除[J];上海師范大學學報(自然科學版);2002年02期
8 于學鴻,許小漢;基于神經(jīng)網(wǎng)絡的波型檢測方法[J];生物醫(yī)學工程學雜志;2000年01期
9 張威;王旭;葛琳琳;張卓;;基于小波變換的子帶自適應濾波算法及仿真[J];系統(tǒng)仿真學報;2006年04期
10 毛玲;張國敏;孫即祥;;基于位置估計與識別后處理的心電信號P波檢測[J];信號處理;2009年06期
相關(guān)博士學位論文 前1條
1 姚成;心電信號智能分析關(guān)鍵技術(shù)研究[D];吉林大學;2012年
本文編號:2116719
本文鏈接:http://sikaile.net/yixuelunwen/xxg/2116719.html