高糖和壓力過負(fù)荷誘導(dǎo)心肌重塑的調(diào)控機(jī)制研究
本文選題:心肌重塑 + 競爭性內(nèi)源RNA; 參考:《哈爾濱工業(yè)大學(xué)》2016年博士論文
【摘要】:心血管疾病是危害人類健康的主要疾病之一,給社會(huì)造成巨大的經(jīng)濟(jì)負(fù)擔(dān)。深入研究心血管疾病發(fā)病的分子機(jī)制并在此基礎(chǔ)上建立新的防治策略和防治措施,降低心血管疾病的死亡率,是生命科學(xué)需要解決的重大基礎(chǔ)科學(xué)問題。壓力過負(fù)荷以及高糖等因素引起心肌重塑導(dǎo)致心肌結(jié)構(gòu)和功能發(fā)生變化,促進(jìn)心血管疾病的發(fā)生。要找到應(yīng)對(duì)不同環(huán)境下心臟重塑和功能失衡的有效方法,當(dāng)前最重要的是要研究了解心肌重塑變化發(fā)生的分子機(jī)制。觸發(fā)心肌重塑的反應(yīng)與多種信號(hào)的激活有關(guān),其中包括轉(zhuǎn)錄后調(diào)控和翻譯后調(diào)控兩個(gè)方面,PTEN和CKIP-1是信號(hào)轉(zhuǎn)導(dǎo)途徑中重要的節(jié)點(diǎn)分子,本文以PTEN和CK IP-1為目標(biāo)分子,分別從信號(hào)分子轉(zhuǎn)錄后調(diào)控和翻譯后調(diào)控兩個(gè)層面,研究不同狀態(tài)下心肌重塑的分子機(jī)制。在心肌重塑的轉(zhuǎn)錄后調(diào)控機(jī)制研究方面,本文通過在糖尿病小鼠心肌中對(duì)預(yù)測的PTEN的競爭性內(nèi)源RNA(competing endogenous RNAs,ce RNAs)進(jìn)行了小規(guī)模的篩選,并在兩種不同類型的糖尿病小鼠心肌中進(jìn)行表達(dá)驗(yàn)證,獲得在糖尿病小鼠心肌中表達(dá)最顯著的PTEN ce RNA-DKK1,同時(shí)利用siRNA敲低和過表達(dá)的實(shí)驗(yàn)驗(yàn)證DKK1對(duì)PTEN 3′非翻譯區(qū)結(jié)合miRNA能力具有調(diào)控作用,通過PTEN 3′非翻譯區(qū)的熒光素酶報(bào)告實(shí)驗(yàn)研究證實(shí)PTEN ce RNA-DKK1對(duì)PTEN的調(diào)控依賴于miRNA的作用;發(fā)現(xiàn)PTEN和DKK1的mRNA受共有miRN A的調(diào)控,證實(shí)DKK 1對(duì)PTEN具有競爭性內(nèi)源RN A的調(diào)控作用,并且該調(diào)控機(jī)制對(duì)高糖誘導(dǎo)的心肌重塑具有影響,DKK1的敲低可以抑制高糖導(dǎo)致的心肌細(xì)胞凋亡增加和葡萄糖攝取能力的減弱,并且DKK1對(duì)心肌重塑的調(diào)控作用是依賴于PI3K/Akt信號(hào)通路的。從而證實(shí)DKK1對(duì)PTEN的競爭性內(nèi)源RN A調(diào)控機(jī)制對(duì)高糖誘導(dǎo)的心肌重塑發(fā)揮了重要的調(diào)控作用,從轉(zhuǎn)錄后調(diào)控研究方面闡釋了高糖誘導(dǎo)心肌重塑的分子機(jī)制。通過構(gòu)建主動(dòng)脈縮窄所致壓力過負(fù)荷引起的小鼠心肌重塑模型,免疫組織化學(xué)染色和Western blotting以及實(shí)時(shí)定量PCR方法檢測心肌重塑發(fā)生過程中CKIP-1 mRN A和蛋白的表達(dá)情況,并利用心肌肥大病人的心肌組織樣本,發(fā)現(xiàn)CKIP-1在心肌重塑發(fā)生早期出現(xiàn)代償性升高,而在后期發(fā)生表達(dá)降低的情況,證實(shí)CKIP-1和心肌重塑密切相關(guān);并利用CKIP-1敲除的模式小鼠,通過心臟組織形態(tài)學(xué)結(jié)果,心肌胚胎期基因表達(dá)情況和小動(dòng)物超聲心動(dòng)技術(shù)分析其不同年齡階段心臟的表型,發(fā)現(xiàn)CKIP-1敲除可促進(jìn)心肌重塑,引起心肌肥大和心臟功能下降;利用CKIP-1敲除的模式小鼠,構(gòu)建主動(dòng)脈縮窄所致壓力過負(fù)荷引起的小鼠心肌重塑模型,發(fā)現(xiàn)CKIP-1敲除可顯著促進(jìn)主動(dòng)脈縮窄所致壓力過負(fù)荷引起的心肌重塑和心臟功能下降,證實(shí)CKIP-1敲除促進(jìn)壓力過負(fù)荷誘發(fā)的心肌重塑;通過構(gòu)建CKIP-1心肌特異轉(zhuǎn)基因小鼠模型,發(fā)現(xiàn)CKIP-1轉(zhuǎn)基因可顯著抑制壓力過負(fù)荷引起的心肌重塑和和心臟功能下降,確認(rèn)CKIP-1對(duì)心肌重塑的重要調(diào)控作用。在心肌重塑的翻譯后調(diào)控機(jī)制研究方面,通過蛋白質(zhì)譜分析,GST-pull down實(shí)驗(yàn)和不同條件下的蛋白免疫共沉淀實(shí)驗(yàn),首次證實(shí)CK IP-1與HDAC4等IIa型HDACs成員之間的相互作用;通過熒光素酶報(bào)告實(shí)驗(yàn),證實(shí)CKIP-1對(duì)HDAC4下游關(guān)鍵轉(zhuǎn)錄因子MEF2轉(zhuǎn)錄活性的調(diào)控作用,并通過siRNA敲低的實(shí)驗(yàn),證實(shí)CKIP-1通過HDAC4發(fā)揮了對(duì)MEF2轉(zhuǎn)錄活性的調(diào)控作用;通過細(xì)胞定位的實(shí)驗(yàn),以及CKIP-1小鼠和心肌特異轉(zhuǎn)基因小鼠的心肌組織切片,證實(shí)CKIP-1對(duì)HDAC4的細(xì)胞定位具有重要調(diào)控作用;通過對(duì)HDAC4磷酸化水平的分析,證實(shí)CKIP-1通過對(duì)HDAC4磷酸化水平的影響而調(diào)控HDAC4的細(xì)胞定位;并且發(fā)現(xiàn)CKIP-1通過與HDAC4和PP2AC之間的相互作用,促進(jìn)了PP2AC與HDAC 4之間的相互作用,對(duì)HDAC4的去磷酸化具有了重要的調(diào)節(jié)作用,從而調(diào)控了HDAC4的細(xì)胞定位和MEF2轉(zhuǎn)錄活性,最終對(duì)心肌重塑發(fā)揮重要的調(diào)控作用。從翻譯后調(diào)控-蛋白去磷酸化的角度,證實(shí)CKIP-1對(duì)心肌重塑的重要調(diào)控作用。綜上所述,在轉(zhuǎn)錄后調(diào)控研究方面,本文發(fā)現(xiàn)競爭性內(nèi)源RNA作用機(jī)制對(duì)高糖誘導(dǎo)的心肌重塑發(fā)揮了重要調(diào)控作用,在翻譯后調(diào)控研究方面,發(fā)現(xiàn)CKIP-1通過影響PP2A對(duì)HDAC4的去磷酸化作用對(duì)壓力過負(fù)荷引起的心肌重塑發(fā)揮了調(diào)控作用。進(jìn)一步闡明了不同因素誘導(dǎo)心肌重塑的分子機(jī)制。
[Abstract]:Cardiovascular disease is one of the major diseases that harm human health, causing great economic burden to the society. It is a major basic scientific problem to solve the molecular mechanism of cardiovascular disease and to set up new prevention and control strategies and measures to reduce the mortality of cardiovascular diseases. Cardiac remodeling leads to cardiac structure and function changes and promotes the occurrence of cardiovascular disease. It is important to study the molecular mechanism of understanding the changes of cardiac remodeling and the reaction and multiple of cardiac remodeling. The activation of the signal is related, including post transcriptional regulation and post translation regulation two aspects. PTEN and CKIP-1 are important node molecules in the signal transduction pathway. In this paper, PTEN and CK IP-1 are used as the target molecules. The molecular mechanism of myocardial remodeling in different states is studied from two levels after the regulation of signal molecules after transcriptional regulation and post translation. In the study of post transcriptional regulatory mechanism of myocardial remodeling, a small scale screening was conducted in the myocardium of diabetic mice by the competitive endogenous RNA (competing endogenous RNAs, CE RNAs) in the myocardium of the diabetic mice, and the expression was verified in the myocardium of two different types of diabetic mice to obtain the table in the myocardium of diabetic mice. The most significant PTEN CE RNA-DKK1, while using siRNA knockout and overexpressed experiments to verify that DKK1 has a regulatory effect on miRNA ability in PTEN 3 'non translation region, and through the luciferase report experimental study of the 3' non translation zone of PTEN, the regulation of PTEN CE RNA-DKK1 on PTEN is dependent on the effect. The regulation of miRN A confirms that DKK 1 has a competitive endogenous RN A regulating effect on PTEN, and that the regulatory mechanism has an effect on high glucose induced myocardial remodeling. The knock down of DKK1 can inhibit the increase of myocardial apoptosis and impaired glucose uptake by high glucose, and the regulation of DKK1 on myocardial remodeling depends on PI3K/Ak T signaling pathway. Thus it is confirmed that DKK1's competitive endogenous endogenous RN A regulatory mechanism plays an important role in high glucose induced myocardial remodeling. The molecular mechanism of high glucose induced myocardial remodeling is explained from post transcriptional regulation research. The model of myocardial remodeling in mice induced by pressure overload caused by aortic coarctation is avoided. The expression of CKIP-1 mRN A and protein in the process of myocardial remodeling was detected by immunohistochemical staining, Western blotting and real-time quantitative PCR, and the myocardial tissue samples of the patients with myocardial hypertrophy were used to detect the compensatory elevation of CKIP-1 in the early stage of myocardial remodeling, while the expression decreased in the later period and confirmed CKIP-1. It is closely related to cardiac remodeling; and using CKIP-1 knockout model mice, through cardiac histomorphological results, cardiac embryonic stage gene expression and small animal echocardiography analysis of the heart phenotype at different age stages, it is found that CKIP-1 knockout can promote myocardial remodeling, cause cardiac hypertrophy and cardiac function decline; use CKIP-1 In the knockout model mice, a model of myocardial remodeling induced by stress overload caused by coarctation of the aorta was constructed. It was found that CKIP-1 knockout could significantly promote myocardial remodeling and cardiac dysfunction caused by pressure overload caused by aortic coarctation. It was proved that CKIP-1 knockout promoted myocardial remodeling induced by stress overload; and the CKIP-1 myocardium was constructed. The model of transgenic mice found that CKIP-1 transgenic could significantly inhibit myocardial remodeling and cardiac dysfunction caused by stress overload, and confirmed the important regulatory role of CKIP-1 on myocardial remodeling. In the study of post-translational mechanism of myocardial remodeling, protein mass spectrometry analysis, GST-pull down experiment and protein immunity under different conditions The interaction between CK IP-1 and II a HDACs members, such as HDAC4, was confirmed for the first time, and the regulation of CKIP-1 on the transcriptional activity of the key transcriptional factor of the downstream HDAC4 was confirmed by the luciferase reporter experiment, and through the experiment of siRNA knock down, it was proved that CKIP-1 through HDAC4 exerts the regulation of the transcriptional activity of MEF2. Cell localization experiments, as well as the myocardial tissue sections of CKIP-1 mice and myocardium specific transgenic mice, confirm that CKIP-1 plays an important role in regulating the cell location of HDAC4. Through the analysis of the phosphorylation level of HDAC4, it is proved that CKIP-1 regulates the cell location of HDAC4 by the effect of HDAC4 phosphorylation level; and it is found that CKIP-1 passes with H. The interaction between DAC4 and PP2AC promotes the interaction between PP2AC and HDAC 4, which plays an important regulatory role in the dephosphorylation of HDAC4, thus regulates the cell location and MEF2 transcriptional activity of HDAC4, and ultimately plays an important regulatory role in the remodeling of myocardium. From the angle of post translation regulation protein dephosphorylation, CKIP-1 pairs are confirmed. The important regulatory role of myocardial remodeling. In summary, in the post transcriptional regulation study, we found that the competitive endogenous RNA mechanism plays an important role in the regulation of high glucose induced myocardial remodeling. In the post translation study, it is found that CKIP-1 affects the myocardium caused by stress overload by affecting the dephosphorylation of PP2A to HDAC4. Remodeling played a regulatory role, further elucidated the molecular mechanism of different factors inducing myocardial remodeling.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:R54
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 文莉;徐亞偉;;心肌重塑的性別差異[J];上海醫(yī)學(xué);2011年11期
2 魯毅;劉進(jìn)軍;于曉江;臧偉進(jìn);;心肌重塑分子機(jī)制的研究進(jìn)展[J];生理科學(xué)進(jìn)展;2013年01期
3 杭濤,汪春暉,江時(shí)森,宮劍濱,謝渡江,任海玲,諸葛海鴻;線粒體內(nèi)膜能量相關(guān)轉(zhuǎn)運(yùn)子在大鼠壓力負(fù)荷模型早期心肌重塑中的表達(dá)[J];醫(yī)學(xué)研究生學(xué)報(bào);2005年S1期
4 余錕;尚孝堂;王大英;;中藥改善心肌重塑的研究進(jìn)展[J];江西中醫(yī)藥;2008年09期
5 蔣小英;呂社民;;微小RNA在心肌重塑中的作用[J];生理科學(xué)進(jìn)展;2009年03期
6 邵海濤;張連峰;;肝素結(jié)合性表皮生長因子在心肌重塑中的作用[J];中國比較醫(yī)學(xué)雜志;2011年06期
7 陳光輝,祝善俊,孟素榮,袁玉權(quán);培多普利抑制心肌重塑的實(shí)驗(yàn)研究[J];中華心血管病雜志;1998年02期
8 劉元生,郭繼鴻;心臟β_1腎上腺素受體對(duì)鈣通道調(diào)節(jié)及其在心肌重塑中作用[J];中國實(shí)用內(nèi)科雜志;2003年04期
9 汪華玲,覃數(shù);過氧化物酶體增殖劑活化受體與心肌重塑[J];心血管病學(xué)進(jìn)展;2005年01期
10 陳煥梅;張雪娥;張巧玲;;慢性充血性心力衰竭患者血清cTnI與心肌重塑相關(guān)性的臨床研究[J];中西醫(yī)結(jié)合心腦血管病雜志;2011年12期
相關(guān)會(huì)議論文 前5條
1 蔣世忠;黃嵐;宋明寶;張坡;武曉靜;趙剛;晉軍;于世勇;周音頻;;體外擴(kuò)增的骨髓基質(zhì)細(xì)胞在缺血心肌內(nèi)的存活及對(duì)心肌重塑的影響[A];中華醫(yī)學(xué)會(huì)心血管病分會(huì)第八次全國心血管病學(xué)術(shù)會(huì)議匯編[C];2004年
2 錢令嘉;王新興;戰(zhàn)銳;冷雪;弓景波;張志清;;HSP70在應(yīng)激所致心肌重塑發(fā)生中的作用及其蛋白質(zhì)基礎(chǔ)[A];第七屆全國醫(yī)學(xué)生物化學(xué)與分子生物學(xué)和第四屆全國臨床應(yīng)用生物化學(xué)與分子生物學(xué)聯(lián)合學(xué)術(shù)研討會(huì)暨醫(yī)學(xué)生化分會(huì)會(huì)員代表大會(huì)論文集[C];2011年
3 王培勇;劉健;張恒;唐朝樞;;心肌重塑時(shí)細(xì)胞核Ca~(2+)信號(hào)調(diào)節(jié)和感受系統(tǒng)的研究[A];中國生理學(xué)會(huì)第六屆應(yīng)用生理學(xué)委員會(huì)全國學(xué)術(shù)會(huì)議論文摘要匯編[C];2003年
4 王階;郭麗麗;鄭軍;潘菊華;王彥云;陳朝;李多嬌;;中藥不同配伍干預(yù)缺血性心肌重塑實(shí)驗(yàn)研究[A];2008年中國藥學(xué)會(huì)學(xué)術(shù)年會(huì)暨第八屆中國藥師周論文集[C];2008年
5 馬躍東;陳保林;劉丹;董吁鋼;;蛋白酶體抑制劑MG132通過抑制核轉(zhuǎn)錄因子κB通路改善大鼠高血壓心肌重塑和心臟功能[A];第十三次全國心血管病學(xué)術(shù)會(huì)議論文集[C];2011年
相關(guān)博士學(xué)位論文 前7條
1 凌樹寬;高糖和壓力過負(fù)荷誘導(dǎo)心肌重塑的調(diào)控機(jī)制研究[D];哈爾濱工業(yè)大學(xué);2016年
2 崔兆強(qiáng);血管緊張素Ⅱ1型受體基因的表達(dá)調(diào)節(jié)與心肌重塑的相關(guān)性研究[D];中國協(xié)和醫(yī)科大學(xué);1997年
3 王天楠;腦鈉肽對(duì)心肌重塑的作用機(jī)制研究[D];浙江大學(xué);2007年
4 王長鑫;MiRNA-221調(diào)控心肌重塑的機(jī)制研究[D];北京協(xié)和醫(yī)學(xué)院;2012年
5 劉健;心肌重塑時(shí)細(xì)胞核鈣信號(hào)調(diào)節(jié)機(jī)制的研究[D];第三軍醫(yī)大學(xué);2001年
6 陳章榮;蛋白酶體抑制劑MG-132對(duì)大鼠心肌梗死后心肌重塑的實(shí)驗(yàn)研究[D];重慶醫(yī)科大學(xué);2008年
7 王曉艷;健心湯對(duì)心力衰竭的療效觀察及抗心肌重塑機(jī)制研究[D];中南大學(xué);2009年
相關(guān)碩士學(xué)位論文 前8條
1 鄭永紅;自發(fā)性高血壓大鼠心肌重塑過程中血管緊張素Ⅱ1型和2型受體表達(dá)的研究[D];福建醫(yī)科大學(xué);2002年
2 賈琴;實(shí)驗(yàn)性動(dòng)脈粥樣硬化形成中的心肌重塑及PACAP的干預(yù)研究[D];暨南大學(xué);2006年
3 陳煥梅;慢性充血性心力衰竭患者血清肌鈣蛋白I與心肌重塑的相關(guān)性及其對(duì)預(yù)后影響的臨床研究[D];山西醫(yī)科大學(xué);2008年
4 陳朝暉;小兒先天性心臟病血清基質(zhì)金屬蛋白酶-9與心肌重塑的相關(guān)研究[D];天津醫(yī)科大學(xué);2007年
5 趙煒;轉(zhuǎn)化生長因子β1在大鼠心肌缺氧缺血再灌注損傷修復(fù)及心肌重塑中的作用[D];青島大學(xué);2006年
6 蔣正英;辛伐他汀影響骨橋蛋白表達(dá)與大鼠心肌梗死后心肌重塑的關(guān)系研究[D];重慶醫(yī)科大學(xué);2007年
7 李向東;辛伐他汀調(diào)節(jié)p38和CARP與改善大鼠心肌梗死后心肌重塑[D];重慶醫(yī)科大學(xué);2008年
8 孫伏清;大鼠冠狀動(dòng)脈微栓塞后心肌重塑及心功能損害與培多普利干預(yù)的實(shí)驗(yàn)研究[D];福建醫(yī)科大學(xué);2006年
,本文編號(hào):2064565
本文鏈接:http://sikaile.net/yixuelunwen/xxg/2064565.html