紅細(xì)胞參數(shù)對高血壓的影響及高血壓發(fā)病風(fēng)險(xiǎn)預(yù)測模型研究
本文選題:高血壓 + 紅細(xì)胞計(jì)數(shù); 參考:《山東大學(xué)》2017年碩士論文
【摘要】:高血壓是心腦血管疾病最重要和最常見的危險(xiǎn)因素,中國高血壓的發(fā)病和患病形勢嚴(yán)峻。識別高血壓危險(xiǎn)因素,構(gòu)建高血壓發(fā)病風(fēng)險(xiǎn)預(yù)測模型,評估高血壓發(fā)病風(fēng)險(xiǎn),發(fā)現(xiàn)高危人群,對高危人群進(jìn)行干預(yù)可延緩甚至阻止高血壓的發(fā)生。目前多個國家和地區(qū)建立了高血壓發(fā)病風(fēng)險(xiǎn)預(yù)測模型,但以往的高血壓發(fā)病風(fēng)險(xiǎn)預(yù)測模型通常采用傳統(tǒng)的預(yù)測參數(shù)(年齡、收縮壓、舒張壓、體質(zhì)指數(shù)、吸煙、飲酒和高血壓家族史),缺乏新的預(yù)測因子,使得模型預(yù)測能力受限。近些年來多項(xiàng)研究發(fā)現(xiàn)紅細(xì)胞參數(shù)(紅細(xì)胞計(jì)數(shù)、血紅蛋白含量、血細(xì)胞比容)可能是高血壓的預(yù)測因子,有望助于提高模型預(yù)測能力。為此,本文基于隊(duì)列探討紅細(xì)胞參數(shù)對高血壓的影響,確定其是否可以作為高血壓預(yù)測因子,如果可以,則在考慮紅細(xì)胞參數(shù)的基礎(chǔ)上構(gòu)建高血壓發(fā)病風(fēng)險(xiǎn)預(yù)測模型。資料與方法:本研究基于"山東多中心縱向健康管理隊(duì)列",采用隊(duì)列中2005年至2010年期間參加健康查體的體檢者構(gòu)建隊(duì)列,體檢三次及以上,排除首次體檢時有高血壓、心血管疾病、腦卒中、年齡小于18歲的體檢者,最終有12497人(男7537人、女4960人)進(jìn)入隊(duì)列。描述性分析的基礎(chǔ)上,控制其他影響因素,分性別采用Cox比例回歸分析方法研究紅細(xì)胞參數(shù)(紅細(xì)胞計(jì)數(shù)、血紅蛋白含量、血細(xì)胞比容)對高血壓的影響;分性別納入紅細(xì)胞參數(shù)的基礎(chǔ)上,構(gòu)建高血壓Cox風(fēng)險(xiǎn)回歸預(yù)測模型,并用ROC曲線下面積AUC及O/E進(jìn)行評價(jià)。結(jié)果:1.該健康管理隊(duì)列12497人共隨訪了 38958人年,其中有2785人(男2021、女764人)發(fā)生高血壓,高血壓的發(fā)病密度為71.48/1000人年。2.將紅細(xì)胞參數(shù)按照四分位數(shù)分為四類(Q1,Q2,Q3,Q4),則紅細(xì)胞參數(shù)與其他基線變量之間的關(guān)系如下:無論男女,多數(shù)基線變量隨紅細(xì)胞參數(shù)的增大而增高,但有統(tǒng)計(jì)學(xué)意義的基線變量在不同紅細(xì)胞參數(shù)中略有不同。Cochran-Armitage趨勢性檢驗(yàn)顯示,對于男性,僅有血細(xì)胞比容與高血壓發(fā)生率間存在趨勢性(Z=-3.1628,P0.0001);而女性,三個紅細(xì)胞參數(shù)均與高血壓發(fā)生率間存在趨勢性(紅細(xì)胞計(jì)數(shù),Z=-4.2950,P0.0001;血紅蛋白含量,Z=-5.8120,P0.0001;血細(xì)胞比容,Z=-6.5504,P0.0001)。3.紅細(xì)胞參數(shù)與高血壓發(fā)生風(fēng)險(xiǎn)的Cox比例回歸分析:對于男性,僅調(diào)整年齡時三個紅細(xì)胞參數(shù)Q4的相對危險(xiǎn)度(RR,以Q1為參照組)、紅細(xì)胞參數(shù)四分類模型趨勢性檢驗(yàn)及紅細(xì)胞參數(shù)每增加1個標(biāo)準(zhǔn)差的RR值有統(tǒng)計(jì)學(xué)意義,調(diào)整更多協(xié)變量時無統(tǒng)計(jì)學(xué)意義。對于女性,模型調(diào)整不同協(xié)變量時,Q3和Q4的RR值、紅細(xì)胞參數(shù)四分類模型趨勢性檢驗(yàn)及紅細(xì)胞參數(shù)每增加1個標(biāo)準(zhǔn)差的RR值均有統(tǒng)計(jì)學(xué)意義(P0.05);調(diào)整年齡、吸煙、飲酒、規(guī)律鍛煉、體質(zhì)指數(shù)、收縮壓、空腹血糖、高密度脂蛋白后,紅細(xì)胞計(jì)數(shù)Q2、Q3、Q4的RR值分別是1.140、1.285、1.240,血紅蛋白Q2、Q3、Q4的RR值分別是1.069、1.309、1.311,血細(xì)胞比容Q2、Q3、Q4的 R值分別是 1.019、1.263、1.234。4.多因素Cox比例回歸分析構(gòu)建高血壓發(fā)病風(fēng)險(xiǎn)預(yù)測模型:采用后退法進(jìn)行變量篩選,經(jīng)多因素Cox比例回歸分析構(gòu)建分性別的高血壓發(fā)病風(fēng)險(xiǎn)預(yù)測模型,納入男性模型的有年齡、體質(zhì)指數(shù)、收縮壓、舒張壓、γ-谷氨酰轉(zhuǎn)移酶、空腹血糖、飲酒、年齡與體質(zhì)指數(shù)的交互項(xiàng)及年齡與舒張壓的交互項(xiàng)。納入女性模型的有年齡、體質(zhì)指數(shù)、收縮壓、舒張壓、空腹血糖、血細(xì)胞比容、飲酒和吸煙。5.男性高血壓發(fā)病風(fēng)險(xiǎn)預(yù)測模型的ROC曲線下面積AUC(95%CI)為0.761(0.752,0.771),十折交叉驗(yàn)證后 AUC(95%CI)為 0.760(0.751,0.770),O/E為0.9561。女性高血壓發(fā)病風(fēng)險(xiǎn)預(yù)測模型的AUC(95%CI)為0.750(0.738,0.762),十折交叉驗(yàn)證后 AUC(95%CI)為 0.747(0.735,0.759),O/E 為 0.9707。結(jié)論:1.紅細(xì)胞計(jì)數(shù)、血紅蛋白含量、血細(xì)胞比容升高將增加高血壓發(fā)病的風(fēng)險(xiǎn),這種關(guān)聯(lián)在女性尤為明顯。2.血細(xì)胞比容最終納入女性高血壓發(fā)病風(fēng)險(xiǎn)預(yù)測模型,血細(xì)胞比容是女性高血壓發(fā)生的預(yù)測因子。3.分性別構(gòu)建的高血壓發(fā)病風(fēng)險(xiǎn)預(yù)測模型判別能力和校準(zhǔn)能力效果良好,可用于評估高血壓的發(fā)病風(fēng)險(xiǎn)。
[Abstract]:Hypertension is the most important and most common risk factor for cardiovascular and cerebrovascular diseases. The incidence and incidence of hypertension in China are severe. Identifying the risk factors of hypertension, constructing the prediction model of hypertension risk, assessing the risk of hypertension, finding high-risk groups and intervening in high-risk groups can delay or even prevent the occurrence of hypertension. Many countries and regions have established a predictive model for the risk of hypertension, but the previous prediction models of hypertension risk usually adopt traditional predictive parameters (age, systolic pressure, diastolic pressure, body mass index, smoking, drinking and family history of hypertension), lack of new pretest factors and limited prediction ability. In recent years, many studies have been made. It is found that red blood cell parameters (red blood cell count, hemoglobin content, hematocyte specific volume) may be a predictor of hypertension and may help improve model prediction. Therefore, this paper is based on a cohort study to determine the effect of red cell parameters on hypertension and determine whether it can be used as a predictor of hypertension. If possible, the red blood cell is considered. Based on the parameters, a model for predicting the risk of hypertension was constructed. Data and methods: Based on the "Shandong multi center longitudinal health management queue", a cohort of health checkup participants from 2005 to 2010 in the cohort was constructed and examined for three times and above, excluding hypertension, cardiovascular disease, stroke, and the first physical examination. At the age of 18 years of age, 12497 people (7537 men and 4960 women) entered the cohort. On the basis of descriptive analysis, other factors were controlled and the Cox proportional regression analysis was used to study the effects of red cell parameters (red blood cell count, hemoglobin content, blood cell specific volume) on hypertension. On the basis of the number, the Cox risk regression model of hypertension was constructed, and the area AUC and O/E under the ROC curve were evaluated. Results: 1. the 12497 people of the health management queue were followed up for 38958 years, of which 2785 people (2021 men and 764 women) had hypertension, and the density of hypertension was 71.48/1000 person year.2. and the red blood cell parameters were according to four points. The number is divided into four categories (Q1, Q2, Q3, Q4), and the relationship between red blood cell parameters and other baseline variables is as follows: the majority of baseline variables increase with the increase of red cell parameters in both men and women, but a statistically significant baseline variable has a slightly different.Cochran-Armitage trend test in different red cell parameters. For men, only blood is thin. There was a tendency (Z=-3.1628, P0.0001) between the cell specific volume and the incidence of hypertension, while in women, the three red blood cell parameters were all with the incidence of hypertension (red blood cell count, Z=-4.2950, P0.0001; hemoglobin content, Z=-5.8120, P0.0001; blood cell specific volume, Z=-6.5504, P0.0001) the Cox ratio of the.3. red blood cell parameters to the risk of hypertension Regression analysis: for men, the relative risk degree of three red blood cell parameters (RR, Q1 as reference group) was adjusted only for age (RR, Q1 as reference group). The trend test of red cell parameter four classification model and 1 standard deviation of erythrocyte parameters were statistically significant. There was no statistical significance in adjusting more covariant quantity. For women, the model adjustment was different. When covariate, the RR value of Q3 and Q4, the trend test of the red cell parameter four classification model and the RR value of the red blood cell parameters every 1 standard deviations were statistically significant (P0.05); the adjustment of age, smoking, drinking, regular exercise, body mass index, systolic blood pressure, fasting blood glucose, high density lipoprotein, Q2, Q3, Q4 were 1.140,1.28, RR value of Q4, respectively 1.140,1.28. 5,1.240, the RR values of hemoglobin Q2, Q3, and Q4 were 1.069,1.309,1.311, the R values of blood cell specific volume Q2, Q3, and Q4 were 1.019,1.263,1.234.4. multifactor Cox proportional regression analysis to predict the risk of hypertension. Risk prediction model, including age, body mass index, systolic pressure, diastolic pressure, gamma glutamyl transferase, fasting blood glucose, drinking, interaction between age and body mass index, age and diastolic pressure, including age, body mass index, systolic blood pressure, diastolic pressure, fasting blood glucose, blood cell specific volume, drinking and smoking.5 The area AUC (95%CI) under the ROC curve of the risk prediction model for male hypertension was 0.761 (0.752,0.771), AUC (95%CI) was 0.760 (0.751,0.770) after ten fold cross validation, O/E was the AUC (95%CI) of the 0.9561. female hypertension risk prediction model (0.738,0.762), 0.747 after ten fold cross validation, 0, 0. .9707. conclusion: 1. red cell count, hemoglobin content and increased blood cell specific volume will increase the risk of hypertension. This association is particularly evident in women's.2. blood cell specific volume eventually incorporated into the prediction model of the risk of hypertension in women. Blood cell specific volume is a predictor of female hypertension.3., a gender based hypertension. The risk prediction model is effective in discriminating ability and calibrating ability, and can be used to assess the risk of hypertension.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:R544.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 林芬;羅招云;林敏;楊立業(yè);;珠蛋白生成障礙性貧血紅細(xì)胞參數(shù)的分析[J];檢驗(yàn)醫(yī)學(xué)與臨床;2013年06期
2 耿素敏,趙勇,安國瑞;免疫性溶血性貧血患者紅細(xì)胞參數(shù)及直方圖的觀察[J];上海醫(yī)學(xué)檢驗(yàn)雜志;1998年01期
3 王潭楓;林炳亮;符永玫;;慢性乙型病毒性肝炎患者紅細(xì)胞參數(shù)臨床價(jià)值再評價(jià)[J];熱帶醫(yī)學(xué)雜志;2008年03期
4 張耀平;李皇;黃承樂;班副植;黃榮幸;王獻(xiàn)民;;桂西地區(qū)珠蛋白生成障礙性貧血的紅細(xì)胞參數(shù)篩查價(jià)值探討[J];中國優(yōu)生與遺傳雜志;2014年06期
5 黃貴才,蔡國強(qiáng),呂成偉;615名中老年人紅細(xì)胞參數(shù)分析[J];華南國防醫(yī)學(xué)雜志;2000年01期
6 李曉東;孫繼芹;;紅細(xì)胞參數(shù)在幼兒貧血診斷中的應(yīng)用[J];中國誤診學(xué)雜志;2009年01期
7 林潔丹;霍霞;黃晉榮;鄭桂娜;徐錫金;;貴嶼地區(qū)3~7歲兒童血鎘與紅細(xì)胞參數(shù)的相關(guān)性研究[J];汕頭大學(xué)醫(yī)學(xué)院學(xué)報(bào);2010年02期
8 程俊;;網(wǎng)織紅細(xì)胞參數(shù)與紅細(xì)胞參數(shù)在孕婦缺鐵性貧血的臨床應(yīng)用研究[J];臨床和實(shí)驗(yàn)醫(yī)學(xué)雜志;2013年11期
9 易素芬;張嘉華;;血紅蛋白A2異;颊叩募t細(xì)胞參數(shù)分析[J];檢驗(yàn)醫(yī)學(xué)與臨床;2013年16期
10 倪林仙,樊茂,周敬靜,徐華,胥冀;高原地區(qū)正常兒童紅細(xì)胞參數(shù)參考值調(diào)查[J];中華全科醫(yī)師雜志;2004年01期
相關(guān)會議論文 前5條
1 張麗萍;楊平;;12152名體檢職工紅細(xì)胞參數(shù)比較[A];中華醫(yī)學(xué)會第七次全國檢驗(yàn)醫(yī)學(xué)學(xué)術(shù)會議資料匯編[C];2008年
2 胡敏;鄒亮疇;程蜀琳;;抗阻訓(xùn)練對骨形成生物標(biāo)志物的影響及與紅細(xì)胞參數(shù)變化的相關(guān)分析[A];第九屆全國體育科學(xué)大會論文摘要匯編(4)[C];2011年
3 湯義平;陸強(qiáng);許學(xué)明;趙群峰;裘銀虹;;慢性酒精中毒患者肝功能、紅細(xì)胞參數(shù)狀況及與復(fù)飲相關(guān)性的研究[A];2005年浙江省精神病學(xué)學(xué)術(shù)年會論文匯編[C];2005年
4 陳雪英;孫碧云;;紅細(xì)胞參數(shù)及血清白蛋白在COPD患者中的預(yù)后價(jià)值[A];二○○八年貴州省醫(yī)學(xué)會呼吸病學(xué)分會學(xué)術(shù)大會暨國家級繼續(xù)教育項(xiàng)目《睡眠呼吸疾病診治進(jìn)展學(xué)習(xí)班》論文匯編[C];2008年
5 佘小煒;;不同肝病患者紅細(xì)胞參數(shù)的比較[A];第四屆全國臨床檢驗(yàn)學(xué)術(shù)會議論文匯編[C];2006年
相關(guān)碩士學(xué)位論文 前3條
1 陳亞飛;紅細(xì)胞參數(shù)對高血壓的影響及高血壓發(fā)病風(fēng)險(xiǎn)預(yù)測模型研究[D];山東大學(xué);2017年
2 李曉偉;紅細(xì)胞參數(shù)與糖尿病血管并發(fā)癥相關(guān)性的臨床研究[D];吉林大學(xué);2013年
3 寧小春;優(yōu)秀女子田賽運(yùn)動員冬訓(xùn)期間貧血及鐵貯備的研究[D];北京體育大學(xué);2006年
,本文編號:1904997
本文鏈接:http://sikaile.net/yixuelunwen/xxg/1904997.html