致心律失常性右室心肌病microRNA的表達譜及調控機制研究
本文選題:致心律失常性右室心肌病 + microRNA。 參考:《北京協(xié)和醫(yī)學院》2016年博士論文
【摘要】:研究背景致心律失常性右室心肌病(Arrhythmo genic right ventricular cardiomypathy ARVC)是原發(fā)性遺傳性心肌病,以右室心肌不同程度地被纖維脂肪組織代替為主要特征,往往伴有心室擴大,心力衰竭,嚴重惡性心律失常甚至猝死發(fā)生,是青少年及運動員猝死的主要病因。流行病學調查分析人群中發(fā)病率為1/2000-1/5000。一半以上的ARVC病例是由橋;蛲蛔兯l(fā)的,最常見的橋粒基因突變?yōu)椋簆lako globin (PG), desmoplakin (DSP), plakophilin-2 (PKP2), desmoglein-2 (DSG2) and desmocollin-2 (DSC2)。非橋粒基因突變的基因有轉錄因子β3 (transforming growth factor-β3TGF-β3)和連接蛋白(connexin43 Cx43)。Wnt/β-catenin 和 Hippo信號通路是與心臟發(fā)育相關的重要通路。Wnt/β-catenin信號通路調控心臟祖細胞向心肌細胞和脂肪細胞分化。研究發(fā)現(xiàn)通過沉默DSP基因表達,會導致PG (γ-catenin)從細胞橋粒組合中脫落,從而和β-catenin共同競爭入核,進而引起核內脂肪轉化相關的轉錄因子PPARγ、C/EBP改變,從而促進脂肪分化.Wnt/β-catenin 和 Hippo信號通路有交互作用,兩條通路中YAP, PG 及 β-catenin相互作用形成蛋白復合體。在橋粒基因PKP2突變的情況下,激活NF2引起Hippo信號通路的重要因子MST1/2, LATS1/2 及 YAP發(fā)生激酶的級聯(lián)反應,通過一系列磷酸化,阻止YAP入核發(fā)揮作用,Hppo信號通路激活,發(fā)揮抑制Wnt通路作用,從而引起核內轉錄因子改變促進細胞脂肪化。因而,Hippo通路和Wnt通路可能共同參與了ARVC的發(fā)病。近年來研究發(fā)現(xiàn),micro RN A在心血管疾病的各種病理生理過程中發(fā)揮了重要的調控作用,研究表明microRNA調控心臟的發(fā)育和功能,在許多心血管疾病如急性心肌梗死、肥厚型心肌病、心力衰竭、動脈粥樣硬化等疾病中,microRNA都扮演了重要的角色。microRNA參與許多通路的調控而發(fā)揮作用,也參與了Wnt/β-catenin和Hippo信號通路調控疾病的病理生理過程。然而microRNA與ARVC的研究報道尚少,我們推測ARVC的發(fā)病過程,可能有microRNA的調控參與。研究目的探討microRNA 與 ARVC發(fā)病機制的關系,明確microRN 在 ARVC心肌病中的表達譜及microRNA可能通過Hippo信號通路調控ARVC發(fā)病機制,為ARVC致病機制研究及臨床診斷治療提供依據(jù)和方向。研究方法和結果本研究中應用qRT-PCR檢測技術S-Poly(A)P lus對24例刂ARVC患者心臟移植后的心肌組織樣本microRNA進行了檢測,共檢測1078個人類microRNA,同時以24例正常心肌組織樣本作為對照。通過檢測發(fā)現(xiàn)24個表達異常的microRNA,并進一步在單獨樣品中進行了驗證,結果發(fā)現(xiàn)有12個microRNA表達上調,11個microRNA表達下調。進一步應用ROC曲線分析,對每一個microRNA的敏感性和特異性進行分析,排除兩個microRNA:miR-451a、miR-3647.應用microRNA靶基因軟件進行預測顯示:21個表達異常microRNA中,miR-21-5p與YAP基因的3'UTR具有潛在結合位點;miR-135b靶向MOB1b及LATS2兩個基因,分析了niR-21-5p、miR-135b在Wnt、Hippo信號通路中的靶基因,并繪制了microRNA-Gene網(wǎng)絡圖。通過對ARCV心肌組織microRNA表達譜研究,發(fā)現(xiàn)miR-21-5p.miR-135b可能調節(jié)Vnt及Hippo信號通路,調控細胞脂肪化形成。對miR-21-5p、miR-135b的靶基因和調控機制進一步研究,在HL-1PKP2:shRNA細胞模型中檢測發(fā)現(xiàn)miR-21-5p表達上調,而miR-135b表達下調。雙熒光素酶報告系統(tǒng)檢測結果證實miR-21-5p、miR-135b可以分別結合到靶基因mRNA的3'UTR端。在HL-1細胞中轉染miR-21-5p過表達使得YAP蛋白表達受到抑制;同樣過表達miR-135b時MoBlb及LATS2的蛋白表達量降低。細胞功能研究時,HL-1PKP2:shRNA細胞過表達miR-21-5p會促進細胞的脂肪分化,而miR-135b則會抑制心肌細胞脂肪分化,證實了miR-21-5p.miR-135b在Hippo信號通路中的調控功能。細胞學功能研究證實miR-21-5p促進心肌細胞脂肪形成,而miR-135b起到抑制作用。進一步研究證實YAP為miR-21-5p的靶基因,miR-135b則靶向MoBlb及LATS2.研究結論本實驗應用qRT-PCR檢測技術S-Poly(T)完成了ARVC患者的心肌組織microRNA表達譜研究,實驗證實microRNA參與ARCV的發(fā)育和發(fā)病機制,構建了miR-21-5p、miR-135b與Wnt及Hippo信號通路的調控基因網(wǎng)絡圖。本研究明確了ARVC患者心肌組織的microRNA表達譜;并通過細胞學實驗探索了兩個microRNA miR-21-5p、miR-135b通過Hippo信號通路的調控基因調控基因表達而參與ARVC發(fā)病的分子機制。
[Abstract]:Background arrhythmogenic right ventricular cardiomyopathy (Arrhythmo genic right ventricular cardiomypathy ARVC) is a primary hereditary cardiomyopathy. The right ventricular myocardium is replaced by fibrous adipose tissue in different degrees, often accompanied by ventricular enlargement, heart failure, severe malignant arrhythmia and even sudden death. It is a teenager and The main cause of sudden death of athletes. Epidemiological investigation and analysis of the ARVC cases with more than half of the incidence of 1/2000-1/5000. in the population are caused by the mutation of the gene of the bridge granules. The most common mutation of the gene is: plako globin (PG), desmoplakin (DSP), plakophilin-2 (PKP2), desmoglein-2 (DSG2) and. Gene mutation genes are transcriptional factor beta 3 (transforming growth factor- beta 3TGF- beta 3) and connexin (connexin43 Cx43).Wnt/ beta -catenin and Hippo signaling pathway, an important pathway associated with cardiac development, the.Wnt/ beta -catenin signaling pathway regulates cardiac progenitor cells to differentiate into cardiomyocytes and adipocytes. The expression of DSP gene causes PG (gamma -catenin) to fall off from the cell bridge assemblage, thereby competing with beta -catenin to enter the nucleus, thereby causing the transcription factor related transcription factor PPAR gamma and C/EBP change in the nucleus, thus promoting the interaction of the fat differentiation.Wnt/ beta -catenin and Hippo signaling pathways, and the two pathways are YAP, PG, and beta -catenin. In the case of mutation of the gene PKP2, the activation of NF2 induces an important factor in the Hippo signaling pathway, MST1/2, the cascade of LATS1/2 and YAP, which prevents YAP into the nucleus through a series of phosphorylation, activation of the Hppo signaling pathway, and the inhibition of the Wnt pathway, resulting in the internal transcription factors. Hippo pathway and Wnt pathway may be involved in the pathogenesis of ARVC. In recent years, studies have shown that micro RN A plays an important role in the various pathophysiological processes of cardiovascular disease. The study shows that microRNA regulates the development and function of the heart, and in many cardiovascular diseases such as acute myocardial infarction. Death, hypertrophic cardiomyopathy, heart failure, atherosclerosis and other diseases, microRNA plays an important role in the regulation of many pathways and plays a role in the regulation of the pathophysiology of Wnt/ beta -catenin and Hippo signaling pathways. However, there are few reports on microRNA and ARVC, and we speculate on the hair of ARVC. The course of the disease may be involved in the regulation of microRNA. The purpose of this study is to explore the relationship between microRNA and the pathogenesis of ARVC, to clarify the expression of microRN in ARVC cardiomyopathy and to regulate the pathogenesis of ARVC through the Hippo signaling pathway, and to provide the basis and direction for the research and clinical diagnosis of ARVC pathogenesis and clinical diagnosis. In this study, the qRT-PCR detection technique S-Poly (A) P LUS was used to detect the myocardial tissue samples of 24 cases of ARVC patients after cardiac transplantation. A total of 1078 human microRNA were detected and 24 normal myocardial tissue samples were used as control. The results showed that 12 microRNA expressions were up-regulated and 11 microRNA expressions were downregulated. Further using ROC curve analysis, the sensitivity and specificity of each microRNA were analyzed, two microRNA:miR-451a were excluded, and miR-3647. application microRNA target gene software was used to predict 21 abnormal microRNA, miR-21-5p and YAP. The gene 3'UTR has a potential binding site; miR-135b targets MOB1b and LATS2 two genes to analyze the target genes of niR-21-5p and miR-135b in the Wnt, Hippo signaling pathway, and draw the microRNA-Gene network diagram. Cell adipose formation. The target gene and regulation mechanism of miR-21-5p, miR-135b were further studied. The expression of miR-21-5p was up-regulated in the HL-1PKP2:shRNA cell model and the expression of miR-135b was down regulated. The results of the dual luciferase reporter system detection confirmed that miR-21-5p, miR-135b could be combined to the 3'UTR end of the target gene mRNA. In HL-1 cells. The overexpression of miR-21-5p caused the expression of YAP protein to be inhibited, and the expression of MoBlb and LATS2 was reduced when the miR-135b was overexpressed. The over expression of miR-21-5p in HL-1PKP2:shRNA cells could promote the differentiation of fat in cells, while miR-135b inhibited the differentiation of myocardial cell fat, which confirmed miR-21-5p.miR-135b in Hip. The regulatory function in the Po signaling pathway. Cytological function studies confirm that miR-21-5p promotes the formation of adipose tissue in cardiac myocytes, and miR-135b plays an inhibitory role. Further studies have confirmed that YAP is the target gene for miR-21-5p, and miR-135b targets MoBlb and LATS2. in the conclusion of the experiment, the qRT-PCR detection technique S-Poly (T) was used to complete the myocardial tissue of the ARVC patients. The microRNA expression spectrum study shows that microRNA participates in the development and pathogenesis of ARCV, and constructs a network map of the regulatory gene of miR-21-5p, miR-135b and Wnt and Hippo signaling pathways. This study identified the microRNA expression profiles of cardiac tissue in ARVC patients. Two microRNA miR-21-5p were explored by cytological experiments. MiR-135b passed through the miR-135b. Signaling pathways regulate gene expression and participate in the molecular mechanism of ARVC pathogenesis.
【學位授予單位】:北京協(xié)和醫(yī)學院
【學位級別】:博士
【學位授予年份】:2016
【分類號】:R542.2
【相似文獻】
相關期刊論文 前10條
1 陳勇;劉巍;;microRNA影響抗腫瘤藥物敏感性相關研究進展[J];臨床腫瘤學雜志;2009年09期
2 牛曉曉;王秦秦;;microRNA與肺癌[J];中國肺癌雜志;2010年04期
3 劉靜;王小中;;慢性粒細胞白血病相關microRNA的研究進展[J];分子診斷與治療雜志;2010年04期
4 LEE Younghee;LUSSIER Yves A;;Identification of common microRNA-mRNA regulatory biomodules in human epithelial cancer[J];Chinese Science Bulletin;2010年31期
5 唐志強;;The effect of microRNA-21-siRNA-lentivirus on biological behaviors in human hepatic cancer cell line hepG2[J];China Medical Abstracts(Surgery);2012年01期
6 ;PTEN and PDCD4 are Bona Fide Targets of microRNA-21 in Human Cholangiocarcinoma[J];Chinese Medical Sciences Journal;2012年02期
7 林建宇;朱雨捷;王晶;湯溢飛;徐中華;;急性冠狀動脈綜合征相關microRNA靶向通路及其功能分析[J];蘇州大學學報(醫(yī)學版);2012年04期
8 崔洪亮;張陽德;;microRNA的協(xié)同調控網(wǎng)的構建與研究[J];中國現(xiàn)代醫(yī)學雜志;2012年33期
9 張明杰;徐卓明;朱麗敏;龔霄雷;黃蕊;;先天性心臟病重度肺動脈高壓血漿 microRNA 的分析與驗證[J];上海醫(yī)學;2013年12期
10 孟勝喜;胡義揚;馮琴;;microRNA在中醫(yī)藥防治非酒精性脂肪性肝病中的應用[J];中華中醫(yī)藥雜志;2014年03期
相關會議論文 前10條
1 荊清;袁文俊;秦永文;;microRNA的基因調控新功能[A];中國生理學會第五屆全國心血管、呼吸和腎臟生理學學術會議論文摘要匯編[C];2005年
2 靳新;駱志剛;王金華;管乃洋;;microRNA靶標研究進展[A];中國遺傳學會功能基因組學研討會論文集[C];2006年
3 ;Comparasion of Inhibitory Effects on Survivin Gene Expression in Prostate Cancer by Vector-based microRNA and siRNA[A];2008年全國生物化學與分子生物學學術大會論文摘要[C];2008年
4 朱丹霞;徐衛(wèi);繆扣榮;方成;朱華淵;董華潔;王冬梅;范磊;喬純;李建勇;;慢性淋巴細胞白血病microRNA異常表達研究[A];第13屆全國實驗血液學會議論文摘要[C];2011年
5 Yangchao Chen;;Small molecule modulators of microRNA-34a with anti-cancer activities[A];2013醫(yī)學前沿論壇暨第十三屆全國腫瘤藥理與化療學術會議論文集[C];2013年
6 金希;厲有名;;單純性脂變與非酒精性脂肪性肝炎間差異microRNA表達譜研究[A];2009香港-北京-杭州內科論壇暨2009年浙江省內科學學術年會論文匯編[C];2009年
7 賈新正;盧肖男;聶慶華;張細權;;雞部分microRNA的同源預測與克隆驗證[A];中國動物遺傳育種研究進展——第十五次全國動物遺傳育種學術討論會論文集[C];2009年
8 李炯;段德民;鄭克孝;;新型非標記高通量microRNA芯片技術[A];第一屆全國生物物理化學會議暨生物物理化學發(fā)展戰(zhàn)略研討會論文摘要集[C];2010年
9 徐小濤;陸曉;孫婧;束永前;;肺癌側群細胞microRNA表達譜檢測及初步分析[A];2010’全國腫瘤分子標志及應用學術研討會暨第五屆中國中青年腫瘤專家論壇論文匯編[C];2010年
10 王俊峰;李巍;吳小江;阮康成;;大鼠附睪microRNA表達譜的研究[A];第十一次中國生物物理學術大會暨第九屆全國會員代表大會摘要集[C];2009年
相關重要報紙文章 前2條
1 陳英云 喬蕤琳;哈醫(yī)大成功研發(fā)國內首例microRNA轉基因及敲減小鼠模型[N];黑龍江經(jīng)濟報;2010年
2 記者 陳青;2厘米以下肝癌檢出率88%[N];文匯報;2011年
相關博士學位論文 前10條
1 崔洪亮;microRNA的腫瘤表達研究及協(xié)同調控網(wǎng)絡分析[D];中南大學;2014年
2 馬建華;高粱低磷低氮形態(tài)生理特征及低氮響應的microRNA研究[D];山西農(nóng)業(yè)大學;2014年
3 李虔楨;microRNA相關基因遺傳多態(tài)性與冠心病臨床關聯(lián)及預后研究[D];福建醫(yī)科大學;2015年
4 王耀輝;血清microRNA作為乳腺癌診斷標志物的研究[D];復旦大學;2014年
5 周霽子;環(huán)境因素對心臟畸形胎兒影響的表觀遣傳學機制[D];復旦大學;2013年
6 張麗;microRNA通過調控小膠質細胞炎性反應參與血管性認知障礙發(fā)生發(fā)展[D];復旦大學;2014年
7 查若鵬;肝癌轉移相關microRNA的鑒定及其分子機制研究[D];復旦大學;2013年
8 方硯田;結腸癌干細胞分選、差異microRNA表達譜檢測以及miR-449b-CCND1、E2F3通路在結腸癌干細胞自我更新的機制研究[D];復旦大學;2014年
9 辛成齊;椰棗microRNA鑒定及其在果實發(fā)育過程中的表達譜研究[D];中國科學院北京基因組研究所;2015年
10 李棟;先天性心臟病血漿microRNA表達譜及與GATA4靶序列單核苷酸多態(tài)性的關聯(lián)研究[D];山東大學;2015年
相關碩士學位論文 前10條
1 高智紅;應用多樣性增量方法識別人類基因組microRNA前體序列[D];內蒙古大學;2010年
2 王娜娜;microRNA進化關系及編碼特性研究[D];內蒙古大學;2007年
3 王玫;小麥microRNA的鑒定與分析[D];南昌大學;2007年
4 秦保東;原發(fā)性膽汁性肝硬化microRNA表達譜的檢測及其功能研究[D];第二軍醫(yī)大學;2013年
5 徐嬌陽;循環(huán)microRNA用于低氧性肺動脈高壓早期診斷的實驗研究[D];石河子大學;2015年
6 余綺荷;晚期結直腸癌一線化療的臨床療效預后分析及療效相關microRNA的初步篩選[D];復旦大學;2014年
7 蔡雨函;乙型腦炎病毒的分離鑒定及其在microRNA水平上與PK-15細胞的相互作用研究[D];四川農(nóng)業(yè)大學;2015年
8 葉泥;山羊地方性鼻內腺瘤microRNA的表達差異研究[D];四川農(nóng)業(yè)大學;2015年
9 李敏;活血化痰安神方對冠心病心絞痛痰瘀互結證患者臨床及microRNA研究[D];北京中醫(yī)藥大學;2016年
10 程冉;桂枝茯苓丸加味治療子宮肌瘤的療效觀察及對血清microRNA表達譜的影響[D];北京中醫(yī)藥大學;2016年
,本文編號:1832442
本文鏈接:http://sikaile.net/yixuelunwen/xxg/1832442.html