ASIC1a介導的自噬對高糖及PDGF誘導的HSC-T6活化的影響及相關(guān)機制研究
[Abstract]:Diabetes mellitus (DM) is a complex, multi-system metabolic disease characterized by hyperglycemia and tissue acidification, which can lead to various organ damage and dysfunction. Hepatic fibrosis (HF) is the liver's wound-healing response to various chronic liver injuries. Its essence is extracellular matrix (E-matrix). The accumulation of CM. Hepatic stellate cell (HSC) is the most important cell that produces extracellular matrix components in the liver. Resting hepatic stellate cells can only be activated to induce liver fibrosis. Studies have shown that hyperglycemia is an independent co-factor in the progression of fibrosis in patients with chronic hepatitis C. Hyperglycemia is an important promoter of the development of liver-related diseases. In recent years, the incidence of diabetes mellitus complicated with hepatic fibrosis has gradually increased. In-depth study of the effect of hyperglycemia on the development of hepatic fibrosis has an important role in the mechanism of HSC cell activation and proliferation in the process of hepatic fibrosis. The acid-sensing channel 1a (ASIC1a) is a kind of cationic channel protein complex activated by extracellular H +. The open channel is permeable to Na +, Ca2 +. The opening of ASIC1a channel can lead to extracellular calcium influx. Autophagy plays an important role in the activation of HSC. In the case of liver injury, resting hepatic stellate cells can become activated hepatic stellate cells by up-regulating autophagy, increasing energy production through lipid metabolism and leading to liver fibrosis. Previous studies have shown that hyperglycemia can induce liver injury, promote HSC activation and proliferation, and aggravate liver fibrosis. In this process, ASIC1a is highly expressed in the whole model and cell line level. Further studies have found that ASIC1a is involved in hyperglycemia promoting PDGF-induced HSC activation and proliferation, and aggravating the progress of liver fibrosis. It is not clear whether hyperglycemia promotes the activation and proliferation of HSC induced by PDGF by promoting the expression of ASIC 1a and then up-regulation of autophagy, which promotes the activation and proliferation of HSC and aggravates the progress of hepatic fibrosis. So far, there are no reports on the related studies at home and abroad. Based on the previous studies of the research group, this study focused on high glucose and pdg. F co-stimulates HSC cells, establishes in vitro high glucose and hepatic fibrosis dual model, explores the effect of asic-1a-mediated autophagy on the proliferation and activation of HSC cells in the process of hepatic fibrosis under high glucose environment, and the related mechanisms. The main research contents are summarized as follows: 1. The expression of autophagy-related proteins in the liver tissues of diabetic rats with hepatic fibrosis is before the research group. On the rat model established by streptozotocin and carbon tetrachloride, HE staining and Masson staining were used to observe the pathological changes of the liver in the experimental group. The results showed that the liver tissues of diabetic rats and hepatic fibrosis rats were significantly damaged, and the liver injury in the diabetic rats with hepatic fibrosis group was the most serious. Autophagy-related proteins lc3ii and beclin1, liver fibrosis-related proteins alpha-SMA and CollagenI were measured. the results showed that the expression of lc3ii, beclin1, alpha-SMA and CollagenI in the liver tissue of diabetic rats, hepatic fibrosis rats and diabetic rats with hepatic fibrosis was higher than that of the control group. The results showed that autophagy may be related to the process of diabetes mellitus aggravating liver fibrosis. 2. The changes of autophagy and HSC-T6 stimulated by high glucose and PDGF in order to detect the expression of asic-1a and autophagy in diabetic liver fibrosis cell model. Referring to the pre-conditions of the research group, HSC-T6 cells were stimulated with high glucose (6000mg / l) for 24 hours and then PDGF (10ng / ml) was given to stimulate HSC-T6 cells for 24 hours to establish an in vitro model of high glucose with hepatic fibrosis. Western blot was used to detect the expression of asic1a, autophagy-related protein lc3ii and beclin1, liver fibrosis-related protein alpha-SMA and collageni, and ptflc-3 plasmid transduction. Autophagy was observed by staining and MDC staining. the results showed that high glucose and PDGF stimulation could enhance the expression of asic1a, a-SMA and CollagenI in hsc-t6, accompanied by the increase of autophagy. the high glucose combined with PDGF double model group was the most obvious, and the difference between the high glucose group and PDGF group was statistically significant. Effects of high glucose and PDGF stimulation on the proliferation and activation of HSC-T6 in order to observe the effect of autophagy on the proliferation and activation of hsc, 3-mA was given to block the autophagy of HSC stimulated by high glucose and pdgf, and the expressions of autophagy-related proteins lc3ii and beclin1, liver fibrosis-related proteins alpha-SMA and CollagenI were detected by Western blot. The effect of autophagy blocker 3-mA on the cell cycle of HSC-T6 stimulated by high glucose and PDGF in order to further observe the effect of autophagy on the proliferation and activation of hsc, flow cytometry was used to detect the cell cycle of each group under the co-stimulation of 3-ma, high glucose and pdgf. The results showed that 3-mA could increase the proportion of G0 / G1 phase cells, decrease the proportion of G2 / M phase cells and inhibit the proliferation of hsc. there was a significant difference between the high glucose group and PDGF group. 5. the effect of amiloride on autophagy in HSC-T6 stimulated by high glucose and pdgf. in order to observe whether asic-1a in HSC stimulated by high glucose and PDGF affected autophagy or not, the effect of asic-1a in HSC was non-specific. The expression of ASIC 1a, autophagy-related protein LC 3ii and Beclin 1, liver fibrosis-related protein alpha-SMA and collageni, ptflc-3 plasmid transfection and MDC staining were detected by Western blot. The results showed that amiloride could decrease the levels of high glucose and pdgf. The expression of ASIC1a in HSC was down-regulated by stimulation, and the expression of autophagy-related proteins lc3ii and beclin1, liver fibrosis-related proteins alpha-SMA and CollagenI were also down-regulated by stimulation. ptflc-3 plasmid transfection and MDC staining showed that amiloride could induce the decrease of HSC autophagy under high glucose and PDGF stimulation. 6. C-t6 autophagy in order to further observe the effect of ASIC1a on autophagy, specific asic1a-shrna was transfected into HSC-T6 stimulated by high glucose and pdgf. Western blot was used to detect the expression of asic1a, autophagy-related proteins lc3ii and beclin1, liver fibrosis-related proteins alpha-SMA and collageni. The expression of ASIC1a protein in HSC-T6 was decreased, while the expressions of LC3II and Beclin1, alpha-SMA and Collagen I were also decreased. There was a significant difference between the high glucose and PDGF groups. The results showed that both high glucose and PDGF stimulation could enhance the expression of CaMKK beta and the phosphorylation level of ERK in HSC-T6, especially in high glucose combined with PDGF double model group, and the difference between high glucose group and PDGF group was statistically significant. The effect of aMKK beta/ERK pathway on the expression of CaMKK beta/ERK pathway protein in HSC-T6 stimulated by high glucose and PDGF was further observed. Amiloride, high glucose and PDGF were used to stimulate HSC. Western Blot was used to detect the expression of CaMKK beta and the phosphorylation level of ERK. The phosphorylation level of ERK was significantly different from that of PDGF group.
【學位授予單位】:安徽醫(yī)科大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:R575.2;R587.1
【相似文獻】
相關(guān)期刊論文 前10條
1 陳英,彭心昭,樸英杰;自噬分子機制的研究動向[J];解剖科學進展;2000年04期
2 葉青;鄭民華;;自噬的分子機制與病理生理意義[J];國際病理科學與臨床雜志;2007年04期
3 何韜;王海杰;譚玉珍;;自噬在細胞存活和死亡中的作用[J];生理科學進展;2008年01期
4 張志才;邵增務(wù);;自噬分子機制的研究進展[J];現(xiàn)代生物醫(yī)學進展;2008年01期
5 趙勇;師長宏;伍靜;張海;;自噬的形態(tài)特征及分子調(diào)控機制[J];中國比較醫(yī)學雜志;2010年10期
6 王梅;李慶林;;自噬與癌癥的治療[J];安徽醫(yī)藥;2010年08期
7 伍靜;趙勇;師長宏;張海;;自噬的形態(tài)特征及分子調(diào)控[J];現(xiàn)代生物醫(yī)學進展;2010年20期
8 王雄;譚璐;;自噬研究進展[J];亞太傳統(tǒng)醫(yī)藥;2010年10期
9 卞龍艷;;運動與自噬的關(guān)系進展研究[J];齊齊哈爾醫(yī)學院學報;2011年07期
10 王偉;徐忠東;陶瑞松;;腫瘤發(fā)生過程中自噬與凋亡關(guān)系的研究[J];合肥師范學院學報;2011年06期
相關(guān)會議論文 前10條
1 韋雪;漆永梅;張迎梅;;鎘、活性氧自由基與自噬發(fā)生的分子機制[A];中國活性氧生物學效應學術(shù)會議論文集(第一冊)[C];2011年
2 秦正紅;粱中琴;陶陸陽;黃強;劉春風;蔣星紅;倪宏;邢春根;;自噬在細胞生存與死亡中的作用[A];中國藥理學會第九次全國會員代表大會暨全國藥理學術(shù)會議論文集[C];2007年
3 秦正紅;;自噬與腫瘤和神經(jīng)細胞生存——藥物作用的新靶位[A];全國生化與分子藥理學藥物靶點研討會論文摘要集[C];2008年
4 李芹;丁壯;;自噬功能研究進展[A];中國畜牧獸醫(yī)學會家畜傳染病學分會第八屆全國會員代表大會暨第十五次學術(shù)研討會論文集[C];2013年
5 胡晨;張璇;滕衍斌;胡海汐;周叢照;;家蠶中自噬相關(guān)蛋白Atg8的結(jié)構(gòu)研究[A];華東六省一市生物化學與分子生物學會2009年學術(shù)交流會論文摘要匯編[C];2009年
6 陳希;李民;Xiao-Ming Yin;李林潔;;通過不同途徑誘導自噬的化合物對Atg9的依賴性不同[A];細胞—生命的基礎(chǔ)——中國細胞生物學學會2013年全國學術(shù)大會·武漢論文摘要集[C];2013年
7 陳涓涓;敬靜;蔡元博;張俊龍;;針對活體細胞自噬行為的發(fā)光金屬配合物的設(shè)計[A];中國化學會第28屆學術(shù)年會第8分會場摘要集[C];2012年
8 寧曉潔;鐘自彪;王彥峰;付貞;葉啟發(fā);;缺血再灌注誘導小鼠肝細胞自噬[A];2013中國器官移植大會論文匯編[C];2013年
9 吳曉琦;李丹丹;鄧蓉;江山;楊芬;馮公侃;朱孝峰;;CaMKKβ磷酸化Beclin 1調(diào)控自噬及其在腫瘤治療中的作用[A];2011醫(yī)學科學前沿論壇第十二屆全國腫瘤藥理與化療學術(shù)會議論文集[C];2011年
10 周鴻雁;裴中;陳杰;申存周;錢浩;劉妍梅;冼文彪;鄭一帆;陳玲;;線粒體動力改變參與了LRRK2突變導致的自噬[A];中華醫(yī)學會第十三次全國神經(jīng)病學學術(shù)會議論文匯編[C];2010年
相關(guān)重要報紙文章 前3條
1 生命學院;俞立課題組在《科學》發(fā)文揭示自噬調(diào)控的重要機制[N];新清華;2012年
2 周飛 張粹蘭;花櫚木“自噬”可抗癌[N];廣東科技報;2011年
3 張明永;水稻自噬基因研究取得新進展[N];廣東科技報;2011年
相關(guān)博士學位論文 前10條
1 賈盛楠;轉(zhuǎn)錄因子p8調(diào)控自噬的功能研究[D];浙江大學;2015年
2 皮會豐;DNM1L蛋白介導的線粒體自噬在鎘致肝臟毒性中的作用研究[D];第三軍醫(yī)大學;2015年
3 李倩;miRNAs介導的自噬抑制在類鼻疽桿菌感染免疫逃逸中的作用機制研究[D];第三軍醫(yī)大學;2015年
4 黎炳護;激活TRPV1誘導自噬在血管平滑肌細胞泡沫化中作用及機制研究[D];第三軍醫(yī)大學;2015年
5 陳江偉;自噬在椎間盤退變中的作用及機制研究[D];上海交通大學;2014年
6 李榮榮;自噬在布比卡因肌毒性中的作用及機制研究[D];南京醫(yī)科大學;2015年
7 王維;NF-κB信號通路參與介導的自噬在高血壓大鼠心血管重構(gòu)的作用研究[D];山東大學;2015年
8 劉春朋;日糧硒缺乏對雞肝臟蛋白質(zhì)組學及自噬變化的影響[D];東北農(nóng)業(yè)大學;2015年
9 梁蓓蓓;P53凋亡刺激蛋白ASPP2調(diào)控細胞自噬的研究[D];上海交通大學;2012年
10 袁揚;線粒體自噬的抗缺血性腦損傷作用及其調(diào)控機制研究[D];浙江大學;2016年
相關(guān)碩士學位論文 前10條
1 匡紅;Jnk2通過smARF的降解來調(diào)控壓力誘導的線粒體自噬及組織損傷[D];浙江理工大學;2015年
2 洪永桃;自噬在類風濕關(guān)節(jié)炎滑膜成纖維細胞中的作用及甲氨蝶呤對自噬的影響[D];川北醫(yī)學院;2015年
3 李寧;自噬在嗎啡心肌保護中的作用及機制研究[D];河北聯(lián)合大學;2014年
4 劉冰;腦缺血預處理對大鼠局灶性腦缺血再灌注后自噬及凋亡的影響[D];河北聯(lián)合大學;2014年
5 王存凱;microRNA-30a-5p通過抑制自噬阻止肝星狀細胞激活[D];河北醫(yī)科大學;2015年
6 張宇程;泛素連接酶HOIL-1L在線粒體自噬中的功能與機制研究[D];中國人民解放軍軍事醫(yī)學科學院;2015年
7 唐芙蓉;自噬對奶山羊雄性生殖干細胞生物學特性的影響[D];西北農(nóng)林科技大學;2015年
8 陳軍童;腎損傷分子1對高糖誘導人腎小管上皮細胞自噬作用的影響[D];鄭州大學;2015年
9 包勇;Kap1在LBH589誘導的乳腺癌細胞MCF-7自噬形成中的作用[D];復旦大學;2013年
10 魏園玉;P53缺失型HL-60白血病細胞內(nèi)Nucleostemin下調(diào)對mTOR通路介導的自噬活性的影響[D];鄭州大學;2015年
,本文編號:2243429
本文鏈接:http://sikaile.net/yixuelunwen/xiaohjib/2243429.html