血管抑素抑制兔角膜堿燒傷后新生血管的蛋白組研究
[Abstract]:1. purpose and significance of the study
Corneal tissue is a transparent tissue without blood vessels. One important reason for maintaining its transparency is that it has no blood vessels. In pathological conditions such as infection, trauma, immune response, rejection, wearing contact lenses, alkali burns, stromal ulcers, limbal stem cell lesions, neovascularization from the limbal vascular network gradually invades the cornea, from Certainly, CNV plays a positive role in clearance of infection and wound healing. However, CNV leads to the decrease of corneal transparency, which seriously affects visual acuity. In addition, CNV can destroy the normal corneal microenvironment and make the physiological immune immunity of the anterior segment disappear. As a high risk factor for corneal graft rejection, the treatment of corneal neovascularization has become a hot topic in ophthalmology. Recent studies have confirmed that angiostatin (AS) has a definite anti-angiogenesis effect on corneal neovascularization. Corneal epithelial cells have been shown to secrete angiostatin, but the cornea is damaged. In addition, angiostatin has been proved to inhibit corneal neovascularization by viral vectors or local application. However, the lack of research on the mechanism of action affects the clinical application of angiostatin. Therefore, clarifying the mechanism of angiostatin against corneal neovascularization is bound to lay a solid foundation for its clinical application. The foundation and generate huge social and economic benefits.
2. research methods
As we all know, proteins are a kind of important biological macromolecules and the main undertakers of life activities. Since the concept of proteome was put forward, the research of proteomics has made gratifying progress. With the development of related experimental techniques, it is possible to study the similarities and differences of protein expression in different physiological or pathological conditions, the classification and identification of related proteins, especially the interaction between proteins and the function of proteins. Based on corneal neovascularization prepared by alkali burn, local angiostatin is applied to separate the protein and dye the cornea by two-dimensional electrophoresis. The gel image analysis system is used to quantitatively analyze the protein spots, so as to identify the differential expression of local angiostatin in the process of corneal neovascularization. Further, mass spectrometry was carried out to obtain qualitative data of related proteins.
3. research contents and process
(1) Experimental animals and groups: 32 New Zealand white rabbits (purchased from the Animal Center of Southern Medical University) were divided into three groups. Group A was the blank control group: 8 New Zealand rabbits did not do any treatment; Group B was the burned group: 12 New Zealand rabbits were used to establish corneal neovascularization model by alkali burns, the first one after operation. In group C, 12 New Zealand rabbits were treated with the same method to establish corneal neovascularization model, and 30 ug/ml angiostatin (AS) was used locally on the first day after operation, three times a day until corneal specimens were taken.
(2) Corneal neovascularization model: Corneal neovascularization model was prepared by alkali burn: Ketamine 25mg/kg and chlorpromazine 25mg/kg were injected intramuscularly into New Zealand rabbits for general anesthesia, 0.5% tetracaine for surface anesthesia, eyelid opener was placed to fully expose the ocular surface, 10 mm circular filter paper immersed in 1.5 mol/L NaOH solution was placed in the center of the ocular surface, and removed 1.5 minutes later, 50 M1 physiology was used. Rinse the eyedrop with saline and smear Tobramycin Eye Ointment with tobramycin eye drops.
(3) Observation of corneal neovascularization: observation of corneal neovascularization after surgery, the use of slit lamp (Suzhou 66 production YZ5T model) photography on the 16th. Corneal neovascularization detection: measurement of the length of blood vessels, small continuous curvature, neovascularization toward the center of corneal opacity growth of the longest blood vessels, and calculation of corneal neovascularization growth area (A) According to the formula A=C/12*3.1416[r2-(r-1)2], C is the number of circular clock points of Nv involved cornea, 1 is the length of neovascularization penetrating cornea from corneal limbus, and R is the radius of rabbit cornea.
(4) Sample sampling and whole protein extraction: 3 weeks after operation, the samples were quickly placed in a 5 ml cryopreservation tube, then stored in a cryopreserve refrigerator at - 80 C after liquid nitrogen freezing. The tissue blocks stored at - 80 C were quickly ground to a fine powder, then added lysate homogenate and centrifuged. The protein concentration of the samples was calculated by Bradford quantitative method.
(6) two dimensional gel electrophoresis (2-DE): first direction (IPG-IEF) isoelectric focusing was performed according to the isoelectric point of protein, and second directions (SDSPAGE) were separated according to the relative molecular weight of protein, and then stained with EMBL silver after two dimensional electrophoresis.
(7) image analysis and differential protein selection: scanning the silver stained 2-DE glue map into the computer. Each gel image was analyzed by ImageMaster2D software, and the relative protein content of all protein spots in the map was calculated to find out the protein that appeared in all three pieces of gum.
(8) Mass spectrometry analysis: the different protein spots were cut, decolorized, enzymatically hydrolyzed and extracted. The samples were analyzed by mass spectrometry using ABI 4700 MALDI-TOF-TOF mass spectrometer. The UV wavelength was 355 nm, the repetition rate was 200 HZ, the acceleration voltage was 200 000 V, the optimal mass resolution was 1500 Da. The scanning mass range was 700-3200 Da, and the signal was collected. The mass spectra of all the experimental samples were obtained by default mode.
(9) Database retrieval: Mascot distiller is used to filter baseline peaks and identify signal peaks. Matrixscience's Mascot software is used to search mammalian databases for matching proteins and query their functions to determine which proteins are identified. The error range between the apparent PI and the apparent MR is unlimited. (3) The maximum allowable error of the molecular weight of the peptide fragment is controlled at (+50 ppm.) (4) The incomplete selection of the enzymatic fragment is 1-2. (5) Species Source Selection (Mammal). (6) Ion Selection MH and monoisotopic. (7) Fixed modification to cysteine iodoacetamidation (Carbamidomethy1) can be changed to methionine. Oxidation (Oxsidation).
4. main results
(1) successful establishment of rabbit corneal neovascularization model.
(2) On the 16th day after corneal alkali burn, the area of neovascularization in angiostatin group (group C) was 37.62+9.65 mm2, and that in control group (group B) was 46.77+8.98 mm2. Two independent samples t test was used and SPSS 13.0 software was used to analyze the results. The results showed that angiostatin had inhibitory effect on corneal neovascularization.
(3) after two dimensional electrophoresis, A and C two groups were compared with B group, and 13 differential protein spots were detected.
(4) Differential protein identification: 13 proteins were identified by mass spectrometry and database searching. Among them, 6 proteins were significantly lower in group B than in group A and C: albumin precursor, heat shock protein A8, pyruvate kinase, beta B3-crystallin, retinal protein 1 and one not yet identified. Named proteins; group B was significantly higher than group A and C in six proteins: reticulum calcium binding protein 3, keratin 14, actin 11, immunoglobulin lambda chain, immunoglobulin K chain, binding globin.
5. main conclusions
In the past few decades, anti-angiogenic therapy has developed dramatically in tumor, corneal neovascularization and other neovascular diseases by local use or gene delivery. In this experiment, we found that the corneal neovascularization in alkali-burned rabbits decreased significantly after topical drip of angiostatin. In order to understand the mechanism of angiostatin's anti-angiogenic effect, we found that angiostatin could inhibit the elevated proteins such as keratin 14, reticulin 3 and nodule after alkali burn in cornea. Angiostatin also restores reduced proteins such as crystallin, retinol binding protein, albumin precursor, pyruvate kinase, and HSPA8, which are involved in corneal epithelial repair, energy metabolism, and protein synthesis. The dynamic change of protein content is the direction of our research.
【學位授予單位】:南方醫(yī)科大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:R772.2
【相似文獻】
相關期刊論文 前10條
1 解孝鋒,畢宏生;血管抑素治療眼部新生血管疾病研究進展[J];山東醫(yī)藥;2004年20期
2 朱偉;陶祥臣;李新;袁中芳;牟國營;;內皮抑素的低分子肝素修飾及對兔角膜新生血管的抑制作用[J];山東大學耳鼻喉眼學報;2007年05期
3 解玉軍;高曉唯;李文靜;;1,25二羥基維生素D_3對兔角膜堿燒傷朗格罕氏細胞影響[J];現(xiàn)代生物醫(yī)學進展;2011年05期
4 徐錦堂;陳建蘇;;角膜堿燒傷病理過程中的免疫機制[J];眼科新進展;2007年04期
5 魏海霞;魯建華;張文芳;;吡格列酮對大鼠堿燒傷角膜IL-1α、IL-6表達的影響[J];眼科研究;2008年11期
6 劉春民,徐錦堂,趙松濱;角膜堿燒傷后機體巨噬細胞和淋巴細胞的功能變化[J];國際眼科雜志;2002年04期
7 鄭曉汾;綜述;褚仁遠;馮克孝;;角膜堿燒傷的免疫學研究[J];中國眼耳鼻喉科雜志;2004年05期
8 解玉軍;高曉唯;;角膜堿燒傷免疫學機制研究進展[J];現(xiàn)代生物醫(yī)學進展;2010年08期
9 皮裕t ;陸江陽;唐維強;董瑩;;組織工程角膜上皮移植治療兔角膜堿燒傷的形態(tài)學觀察[J];國際眼科雜志;2008年11期
10 吳紅,張濼;角膜堿燒傷中郎格罕細胞的變化及作用[J];眼外傷職業(yè)眼病雜志(附眼科手術);1992年S1期
相關會議論文 前10條
1 彭建軍;吳陽;胡大一;路璐;朱正炎;王長華;李建勇;郁鵬;;骨髓動員與骨髓細胞移植對急性心肌梗死豬再灌注后心肌修復及血管再生作用的比較研究[A];中華醫(yī)學會心血管病分會第八次全國心血管病學術會議匯編[C];2004年
2 陳奇;陳雪梅;劉秋瓊;陳松海;;復方姜黃合劑對糖尿病大鼠視網(wǎng)膜新生血管形成的干預[A];2010年廣東省藥師周大會論文集[C];2011年
3 銀華;;新生血管性青光眼患者的預防和護理[A];全國五官科護理學術交流暨專題講座會議論文匯編[C];2005年
4 陳濱;柏林;馬慶杰;;電離輻射對大鼠角膜堿燒傷所致新生血管形成的抑制作用[A];中華醫(yī)學會第九次全國核醫(yī)學學術會議論文摘要匯編[C];2011年
5 黃品同;黃福光;孫海燕;田新橋;楊琰;呂夕明;唐疾飛;張超;;超聲造影對頸動脈粥樣斑塊內新生血管的血流動力學研究[A];2006年浙江省超聲醫(yī)學學術年會論文匯編[C];2006年
6 田孝祥;韓雅玲;康建;徐凱;閆承慧;;小鼠胚胎干細胞體外分化形成新生血管的實驗研究[A];中華醫(yī)學會心血管病學分會第八次全國心血管病學術會議匯編[C];2006年
7 李世宏;葉劍;賀翔鴿;李翔驥;;Avastin結膜下注射治療角膜新生血管一例[A];中國眼底病論壇·全國眼底病專題學術研討會論文匯編[C];2008年
8 孫化萍;王育良;章淑華;王友法;陸綿綿;魏偉;;眼底新生血管與中醫(yī)辨證的相關性研究[A];全國第九次中醫(yī)、中西醫(yī)結合眼科學術年會論文匯編[C];2010年
9 鄭元義;王志剛;冉海濤;張群霞;李曉東;凌智瑜;盧岷;任紅;;超聲微泡造影劑對新生血管的作用[A];慶祝中國超聲醫(yī)學工程學會成立20周年——第八屆全國超聲醫(yī)學學術會議論文匯編[C];2004年
10 陳麗敏;康曉星;王華;邱麗穎;馮磊;金堅;;合歡皮不同路線提取皂苷對小鼠移植瘤的影響[A];中國藥理學會第十次全國學術會議?痆C];2009年
相關重要報紙文章 前10條
1 阿勝;抑制新生血管 挽救患者視力[N];醫(yī)藥經(jīng)濟報;2002年
2 侯潔;新生血管性青光眼如何治療?[N];健康時報;2007年
3 劉侃;“卡特消”抑制腫瘤新生血管理論的實踐[N];科技日報;2004年
4 高原;有點神奇,海藻中分離出強抗癌物質[N];新華每日電訊;2008年
5 ;繼發(fā)新生血管性青光眼的治療[N];保健時報;2005年
6 朱國旺;濕性黃斑變性的治療獲突破性進展[N];中國醫(yī)藥報;2008年
7 王丹;眼花了……[N];醫(yī)藥經(jīng)濟報;2008年
8 王偉;我國新添治療脈絡膜新生血管眼科新藥[N];中國勞動保障報;2005年
9 副主任醫(yī)師 馮春;如何預防糖尿病性視網(wǎng)膜病變[N];衛(wèi)生與生活報;2007年
10 ;糖尿病視網(wǎng)膜病變分期[N];保健時報;2005年
相關博士學位論文 前10條
1 李燕偉;人羊膜間充質干細胞移植對兔角膜堿燒傷的療效及磁標記示蹤分析[D];鄭州大學;2013年
2 陳鵬;角膜血管膜上皮細胞表型鑒定及新生血管相關靶點的篩選[D];青島大學;2012年
3 邱培瑾;角膜堿燒傷后新生血管增殖的實驗研究[D];浙江大學;2002年
4 吳利安;異基因骨髓間充質干細胞早期局部移植修復堿燒傷角膜的研究[D];天津醫(yī)科大學;2008年
5 鄭凱;Angiostatin對膀胱腫瘤新生血管抑制作用的實驗研究[D];第四軍醫(yī)大學;2004年
6 石文靜;吸氧和血管生長因子在新生小鼠視網(wǎng)膜病發(fā)病中的作用[D];復旦大學;2004年
7 陶開山;血管抑素抗腫瘤血管生成機制的實驗研究[D];第四軍醫(yī)大學;2004年
8 姚兵;Tumstatin基因的克隆、表達及其與吉西他濱聯(lián)合抗腫瘤作用的實驗研究[D];四川大學;2005年
9 姜荔;視網(wǎng)膜色素上皮形態(tài)學改變對脈絡膜新生血管臨床轉歸的影響[D];中國人民解放軍軍醫(yī)進修學院;2004年
10 包大士;重組腺病毒載體介導血管抑素基因治療大鼠腦膠質瘤的實驗研究[D];蘇州大學;2001年
相關碩士學位論文 前10條
1 徐懿;Akt促進大鼠角膜新生血管形成的初步研究[D];中南大學;2012年
2 左進彩;地塞米松聯(lián)合羊膜勻漿上清液治療兔角膜堿燒傷的實驗研究[D];山西醫(yī)科大學;2010年
3 幸正茂;他可莫司滴眼液治療角膜堿燒傷的免疫學機制研究[D];南昌大學;2010年
4 陳小雄;胰島素對兔角膜堿燒傷早期組織病理學與白介素表達的影響[D];重慶醫(yī)科大學;2010年
5 李靜;維生素C不同頻率及途徑對兔角膜堿燒傷療效觀察[D];山西醫(yī)科大學;2011年
6 唐霞;胰島素在兔角膜堿燒傷后抗凋亡作用的初步研究[D];重慶醫(yī)科大學;2010年
7 楊杰;綠茶多酚對小鼠角膜堿燒傷的治療作用研究[D];浙江大學;2012年
8 董瑩;雷帕霉素抑制大鼠角膜移植排斥和新生血管的實驗研究[D];中國人民解放軍軍醫(yī)進修學院;2004年
9 顧朝輝;玻璃體后脫離對光凝治療糖尿病視網(wǎng)膜病變效果影響的臨床研究[D];河北醫(yī)科大學;2005年
10 徐為海;金雀異黃素對兔角膜堿燒傷新生血管的抑制作用研究[D];南京醫(yī)科大學;2009年
,本文編號:2245466
本文鏈接:http://sikaile.net/yixuelunwen/wuguanyixuelunwen/2245466.html