病態(tài)嗓音的定量分析及人工神經(jīng)網(wǎng)絡(luò)識(shí)別
本文選題:嗓音聲學(xué)分析 + 病態(tài)嗓音 ; 參考:《臨床耳鼻咽喉頭頸外科雜志》2017年02期
【摘要】:目的:探討臨床病態(tài)嗓音的特征及計(jì)算機(jī)自動(dòng)識(shí)別病態(tài)嗓音的可行性。方法:選擇129例聲帶息肉患者為病態(tài)嗓音組,同期選取125例社區(qū)正常嗓音人群為對(duì)照組。應(yīng)用Praat軟件采集分析2組病例獲得相關(guān)聲學(xué)參數(shù)值,包括基頻微擾、振幅微擾、諧噪比、信噪比、聲門噪聲。采用該病態(tài)嗓音組與對(duì)照組病例作為神經(jīng)網(wǎng)絡(luò)檢測的訓(xùn)練集和測試集。同樣方法另外收集140例病態(tài)嗓音及正常嗓音數(shù)據(jù)作為驗(yàn)證集。應(yīng)用SPSS Modeler軟件進(jìn)行人工神經(jīng)網(wǎng)絡(luò)建模,計(jì)算模型對(duì)病態(tài)嗓音的識(shí)別率。結(jié)果:本研究根據(jù)不同性別分組計(jì)算,病態(tài)嗓音組在基頻微擾、振幅微擾、聲門噪聲方面數(shù)值比對(duì)照組增大(P0.05),諧噪比、信噪比方面數(shù)值比對(duì)照組減少(P0.05)。人工神經(jīng)網(wǎng)絡(luò)模型對(duì)病態(tài)嗓音的識(shí)別率為75.7%。結(jié)論:客觀嗓音分析有助于病態(tài)嗓音的鑒別,人工神經(jīng)網(wǎng)絡(luò)在病態(tài)嗓音的識(shí)別上準(zhǔn)確率較高,有很好的臨床應(yīng)用價(jià)值。
[Abstract]:Objective: to explore the features of clinical pathological voice and the feasibility of computer automatic recognition of pathological voice. Methods: 129 patients with vocal cord polyps were selected as pathological voice group and 125 normal voice patients as control group. Two groups of cases were collected and analyzed by Praat software to obtain relevant acoustic parameters, including fundamental frequency perturbation, amplitude perturbation, harmonic noise ratio, signal-to-noise ratio and glottic noise. The pathological voice group and the control group were used as the training set and test set for neural network detection. In the same method, 140 samples of abnormal voice and normal voice were collected as validation set. SPSS Modeler software was used to model artificial neural network, and the recognition rate of pathological voice was calculated. Results: according to different sex groups, the fundamental frequency perturbation, amplitude perturbation and glottic noise were higher in the pathological voice group than in the control group (P0.05), the harmonic noise ratio and the signal-to-noise ratio were lower than those in the control group (P0.05). The recognition rate of artificial neural network model for pathological voice is 75.775%. Conclusion: objective voice analysis is helpful to the identification of pathological voice. The accuracy of artificial neural network in the recognition of pathological voice is high and has good clinical application value.
【作者單位】: 復(fù)旦大學(xué)附屬上海市第五人民醫(yī)院耳鼻咽喉科;上海市虹口區(qū)涼城新村街道社區(qū)衛(wèi)生服務(wù)中心;
【基金】:復(fù)旦大學(xué)附屬上海市第五人民醫(yī)院課題(No:2010WYQJ02)
【分類號(hào)】:R767.92
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 任宏;人工神經(jīng)網(wǎng)絡(luò)及其在預(yù)防醫(yī)學(xué)領(lǐng)域的應(yīng)用[J];上海預(yù)防醫(yī)學(xué)雜志;2003年01期
2 趙應(yīng)征,趙愛國,魯翠濤,韓鐵 ,梅興國;人工神經(jīng)網(wǎng)絡(luò)在藥學(xué)研究中的應(yīng)用進(jìn)展[J];解放軍藥學(xué)學(xué)報(bào);2003年06期
3 楊鈞,周新華,馬大慶;人工神經(jīng)網(wǎng)絡(luò)及其在胸部放射學(xué)中的應(yīng)用[J];中華放射學(xué)雜志;2004年02期
4 金玉琴;趙群;施誠;;人工神經(jīng)網(wǎng)絡(luò)及其在中藥研究中的應(yīng)用[J];醫(yī)學(xué)信息;2007年06期
5 鄭義;陸輝;;人工神經(jīng)網(wǎng)絡(luò)及其在藥學(xué)上的應(yīng)用[J];黑龍江醫(yī)藥;2008年06期
6 李麗霞;張敏;郜艷暉;張丕德;周舒冬;;人工神經(jīng)網(wǎng)絡(luò)在醫(yī)學(xué)研究中的應(yīng)用[J];數(shù)理醫(yī)藥學(xué)雜志;2009年01期
7 徐俊芳;周曉農(nóng);;人工神經(jīng)網(wǎng)絡(luò)在傳染病研究中的應(yīng)用[J];中國寄生蟲學(xué)與寄生蟲病雜志;2011年01期
8 王欣萍;孫昕;孫堯;;基于BP人工神經(jīng)網(wǎng)絡(luò)模型構(gòu)建電子病歷系統(tǒng)的數(shù)據(jù)分析[J];中國組織工程研究與臨床康復(fù);2011年35期
9 李光芬,強(qiáng)勇;人工神經(jīng)網(wǎng)絡(luò)在醫(yī)學(xué)中的應(yīng)用[J];醫(yī)學(xué)信息;1998年12期
10 艾超,聶邦畿;人工神經(jīng)網(wǎng)絡(luò)在醫(yī)學(xué)中的應(yīng)用與展望[J];現(xiàn)代醫(yī)學(xué)儀器與應(yīng)用;1999年01期
相關(guān)會(huì)議論文 前10條
1 吳兵;;一種具有語義分布的自構(gòu)造的新人工神經(jīng)網(wǎng)絡(luò)系統(tǒng)及其應(yīng)用[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號(hào)處理學(xué)術(shù)會(huì)議論文集[C];1999年
2 劉R,
本文編號(hào):2091881
本文鏈接:http://sikaile.net/yixuelunwen/wuguanyixuelunwen/2091881.html