頸椎前路減壓研磨過程聲壓信號的分析—體外研究
[Abstract]:Background and objective cervical spondylotic myelopathy (CSM) is a very common degenerative disease. Surgical treatment often results in a good effect on patients with a substantial impairment of the neurological function or a conservative treatment. Anterior cervical discectomy and fusion (ACDF) has been proved to be a widely accepted surgical method for the treatment of cervical spondylotic myelopathy. In the operation, in order to maintain the inter-vertebral height, the requirements of graft subsidence, safety pressure reduction and anchor fixation are avoided, and the requirements for the operation of the cortical bone, the posterior longitudinal ligament and the nail-placing operation under the treatment of the endplates are extremely high. The surgical robot will be an ideal assistant to assist the surgeon in completing these high-difficulty operations. In recent years, a number of surgical robots have been introduced into the spinal surgery. however, they rely primarily on mechanical stiffness, force feedback, and visual feedback. In addition to the above two feedback, the sound pressure signal is also considered to be an effective feedback. However, the analysis of the sound pressure signal in the process of anterior cervical surgery is not reported in the literature. The purpose of this study was to collect the sound pressure signal produced during grinding with high-speed grinding drill on various tissues of bovine cervical vertebrae in vitro, and to analyze the sound pressure signals of the fiber ring, the lower cortical bone, the cancellous bone of the vertebral body and the posterior longitudinal ligament. Methods A total of 8 cattle (9 weeks) of cervical spine were selected, all of which included all the parts of C3 to C7. Exclusion criteria: (1) There is a fracture or pathological wound; (2) there is a transitional osteophyte in the joint of the vertebral body, the joint of the hook and the joint or the joint of the joint, and (3) the ligament has hypertrophy, calcification or ossification. One of the sections was randomly used on each specimen and the intact fiber ring, the lower cortical bone of the endplates, the cancellous bone of the vertebral body, and the posterior longitudinal ligament were used as experimental subjects. Groups are grouped according to the organization's differences. It was divided into four groups: group A: fiber ring, group B: lower cortical bone of endplates, group C: cancellous bone of vertebral body, D group: posterior longitudinal ligament. The experimental specimens were frozen and stored and thawed at room temperature on the same day of the experiment. Simple surgical treatment of the bovine cervical spine and complete exposure to the tissue to be tested. Install the test sound pressure signal device, set the high-speed drill to 60000 rpm, and the sampling frequency of the sound signal (frequency of sampling, FS) is set at 50,000 Hz. The fiber ring, the lower cortical bone of the endplates, the cancellous bone and the posterior longitudinal ligament of the vertebral body are respectively ground. and the sound pressure signal generated during the grinding process is collected by the experimental microphone and transmitted to the dynamic signal acquisition module. The wavelet packet transform is used to transform the sampled signal by using the wavelet packet transform (WPT) software package, and the wavelet packet coefficient of the tree structure is obtained, the information cost function is selected, and the optimal base is selected by using the optimal wavelet packet base selection algorithm. and the wavelet packet coefficients corresponding to the optimal orthogonal wavelet packet base are processed. and a wavelet packet reconstruction algorithm is adopted for the processed wavelet packet coefficients to obtain a reconstructed signal. and then the sound pressure spectrum of the four tissues is obtained. The statistical analysis of the sound pressure signal data was carried out by using the SPSS 10.0 for windows statistical software, and multiple independent sample rank and test (Kruskal-Wallis Test) were performed on the average number of samples at the same frequency. As a result, the sound pressure signal spectrum diagram shows that the state of each grinding is different in different frequencies, and there is a difference between each other. The intensity changes at the five frequencies of 1000Hz, 2000Hz, 3000Hz, 4000Hz and 5000Hz are the most obvious. There is a significant difference in the overall difference between the four groups of sound pressure signals of the fiber ring, the lower cortical bone of the endplates, the cancellous bone of the vertebral body and the four groups of the posterior longitudinal ligament (p0.05). The data of the sound pressure signal of the cortical bone under the fiber ring and the end plate is statistically significant at the frequencies of 1000Hz, 2000Hz, 3000Hz and 5000Hz (p0.05). There was no significant difference in the frequency of 40000Hz (p0.05). The sound pressure signal data of the fiber ring and the posterior longitudinal ligament had statistical significance (p0.05) at the frequency of 2000Hz, 3000Hz, 40000Hz and 5000Hz (p0.05), and there was no statistical difference at the frequency of 1000Hz (p0.05). The acoustic pressure signal data of the lower cortical bone and the cancellous bone of the vertebral body were statistically significant at the frequency of 1000Hz, 2000Hz, 3000Hz and 4000Hz (p0.05), and there was no statistical significance at the 5000Hz frequency (p0.05). Conclusion 1. There is a significant difference between the sound pressure signal produced by the high-speed grinding and grinding of the fiber ring, the lower cortical bone, the cancellous bone of the vertebral body and the posterior longitudinal ligament in the operation. The sound pressure signal produced during the high-speed grinding and grinding process is very promising as a signal feedback in the anterior cervical discectomy and fusion.
【學(xué)位授予單位】:天津醫(yī)科大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:R687.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊淑貞;;45.研磨過程中的污染[J];南藥譯叢;1960年04期
2 何洪波;李康華;胡建中;張宏其;雷光華;王錫陽;;后縱韌帶切除與漂浮在頸椎減壓術(shù)中的療效比較[J];中國骨與關(guān)節(jié)損傷雜志;2006年05期
3 劉建波;呂會強;喬永東;王自立;丁惠強;趙浩寧;;后縱韌帶切除與保留在脊髓型頸椎病前路減壓術(shù)中的療效比較[J];寧夏醫(yī)學(xué)雜志;2010年09期
4 吳偉峰,吳文華,黃奧;推拿導(dǎo)致L_(4,5)后縱韌帶下血腫1例[J];中國脊柱脊髓雜志;1993年04期
5 劉丹,吳震東,黃宰宇;頸前路手術(shù)后縱韌帶切除的臨床研究[J];中國矯形外科雜志;2004年17期
6 廖智輝,呂國華;后縱韌帶切除在頸椎前路減壓中有效性的評價[J];中國醫(yī)師雜志;2005年07期
7 劉英民;朱志強;奚修全;董繼兵;;切除與漂浮后縱韌帶在脊髓型頸椎病前路減壓術(shù)中的療效對比[J];脊柱外科雜志;2007年01期
8 林建;李靜;朱彤;林泓怡;;單純后縱韌帶增生型頸椎病責(zé)任間盤的確認(rèn)及其射頻治療[J];中國疼痛醫(yī)學(xué)雜志;2012年07期
9 嚴(yán)力生;羅旭耀;錢海平;鈕心剛;斯清慶;;頸椎后縱韌帶切除術(shù)的方法改進(jìn)及其臨床意義[J];頸腰痛雜志;2009年03期
10 吳東永;武文杰;黃德征;陳海;謝碩勝;;后縱韌帶切除在頸椎前路減壓中的療效分析[J];吉林醫(yī)學(xué);2012年35期
相關(guān)會議論文 前8條
1 陳德玉;王新偉;陳宇;楊立利;郭永飛;何志敏;劉軍海;;后縱韌帶鉤輔助下頸椎后縱韌帶骨化物切除減壓方法與療效[A];第八屆全國脊柱脊髓損傷學(xué)術(shù)會議論文匯編[C];2007年
2 陳德玉;陳宇;王新偉;楊立利;郭永飛;何志敏;袁文;;后縱韌帶鉤輔助下頸椎后縱韌帶骨化物切除減壓術(shù)[A];第八屆全國脊柱脊髓損傷學(xué)術(shù)會議論文匯編[C];2007年
3 劉建波;呂會強;喬永東;王自立;丁惠強;趙浩寧;;后縱韌帶切除與保留在脊髓型頸椎病前路減壓術(shù)中的療效比較[A];寧夏醫(yī)學(xué)會骨科學(xué)分會第六屆學(xué)術(shù)年會資料匯編[C];2011年
4 劉建波;喬永東;王自立;丁惠強;趙浩寧;;后縱韌帶切除與保留在單節(jié)段脊髓型頸椎病前路減壓術(shù)中的療效比較[A];第三屆全國脊髓損傷治療與康復(fù)研討會論文集[C];2012年
5 嚴(yán)力生;羅旭耀;錢海平;鈕心剛;斯清慶;;頸椎后縱韌帶切除術(shù)的方法改進(jìn)及其臨床意義[A];2009年全國骨與關(guān)節(jié)損傷新技術(shù)研討會暨第六屆股骨頭缺血性壞死修復(fù)與再造學(xué)習(xí)班論文匯編[C];2009年
6 葉添文;賈連順;陳德玉;王新偉;葉曉健;倪斌;袁文;;脊髓型頸椎病的后縱韌帶病理分型及其臨床意義[A];2009“泰山杯”全國骨科青年科技創(chuàng)新論壇暨優(yōu)秀論文評選論文選集[C];2009年
7 劉建波;呂會強;喬永東;王自立;丁惠強;趙浩寧;;后縱韌帶切除與保留在頸椎間盤突出癥前路減壓術(shù)中的療效比較[A];寧夏醫(yī)學(xué)會骨科分會第七屆學(xué)術(shù)年會論文匯編[C];2012年
8 安兵兵;張東升;;皮質(zhì)骨各向異性的疲勞裂紋擴(kuò)展行為研究[A];第九屆全國生物力學(xué)學(xué)術(shù)會議論文匯編[C];2009年
相關(guān)博士學(xué)位論文 前5條
1 陳德純;頸椎后縱韌帶骨化細(xì)胞成骨活性及相關(guān)分子機(jī)制研究[D];第二軍醫(yī)大學(xué);2016年
2 范若尋;老齡相關(guān)骨退化對骨宏微觀力學(xué)性能影響的數(shù)值仿真研究[D];吉林大學(xué);2016年
3 楊崇實;皮質(zhì)骨切開對牙槽骨改建的影響及生物力學(xué)分析[D];重慶醫(yī)科大學(xué);2015年
4 繆錦浩;幾丁糖影響后縱韌帶成纖維細(xì)胞骨化進(jìn)程的相關(guān)研究[D];第二軍醫(yī)大學(xué);2013年
5 譚炳毅;后路手術(shù)對于大鼠后縱韌帶內(nèi)骨化因子的影響[D];第二軍醫(yī)大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 唐慕堯;頸椎前路減壓研磨過程聲壓信號的分析—體外研究[D];天津醫(yī)科大學(xué);2017年
2 高明寶;金剛石研磨過程振動信號分析及信號特征識別研究[D];廣東工業(yè)大學(xué);2011年
3 侯大海;金剛石研磨擾動因素分析與工藝研究[D];廣東工業(yè)大學(xué);2008年
4 戈振州;礦物質(zhì)特性對E型中速磨煤機(jī)研磨過程的影響研究[D];中國礦業(yè)大學(xué);2017年
5 白鶴;頸椎單開門研磨過程中聲壓信號的差異—動物實驗研究[D];天津醫(yī)科大學(xué);2017年
6 庫才高;彈性浮動研磨振動影響因素分析與仿真計算[D];廣東工業(yè)大學(xué);2013年
7 崔濤;工藝參數(shù)對研磨效果影響的理論分析與試驗研究[D];吉林大學(xué);2014年
8 杜育海;頸椎前路手術(shù)治療后縱韌帶骨化癥行后縱韌帶切除的療效評價[D];山東中醫(yī)藥大學(xué);2011年
9 劉建波;后縱韌帶切除與保留在脊髓型頸椎病前路減壓術(shù)中的療效比較[D];寧夏醫(yī)科大學(xué);2011年
10 汪偉;后縱韌帶切除和保留在脊髓型頸椎病前路減壓融合術(shù)中的適應(yīng)癥[D];湖北中醫(yī)藥大學(xué);2014年
,本文編號:2388020
本文鏈接:http://sikaile.net/yixuelunwen/waikelunwen/2388020.html