全膝關(guān)節(jié)置換術(shù)后三維步態(tài)分析與個(gè)性化多體動(dòng)力學(xué)建模初步探索
本文選題:膝關(guān)節(jié) + 全膝關(guān)節(jié)置換術(shù); 參考:《第三軍醫(yī)大學(xué)》2017年博士論文
【摘要】:研究背景人工全膝關(guān)節(jié)置換術(shù)(Total Knee Arthroplasty,TKA)是治療膝關(guān)節(jié)終末期骨關(guān)節(jié)炎(Osteoarthritis,OA)的“金標(biāo)準(zhǔn)”,可緩解疼痛,重建運(yùn)動(dòng)功能。在前面半個(gè)世紀(jì),有關(guān)人工關(guān)節(jié)置換術(shù)植入物壽命的研究大多集中于假體材料科學(xué),因此產(chǎn)生了多種理化性能卓越的假體材料。雖然對人工關(guān)節(jié)材料的研究對進(jìn)一步延長植入物壽命很有價(jià)值,但臨床醫(yī)生逐漸意識(shí)到假體幾何設(shè)計(jì)及其對患者運(yùn)動(dòng)功能的影響對手術(shù)療效及患者滿意度也很重要。盡管仿生學(xué)設(shè)計(jì)、個(gè)性化假體的理念不斷促進(jìn)假體設(shè)計(jì)的改善,但幾乎各種研究都認(rèn)為TKA術(shù)后膝關(guān)節(jié)無法完全達(dá)到健康自然膝關(guān)節(jié)的運(yùn)動(dòng)狀態(tài)。因此,對膝關(guān)節(jié)置換術(shù)患者進(jìn)行運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)評(píng)估可明確TKA術(shù)對關(guān)節(jié)運(yùn)動(dòng)學(xué)產(chǎn)生了怎樣的影響,為臨床診療提供參考,并可作為術(shù)后療效評(píng)價(jià)指標(biāo)。臨床醫(yī)生和人工關(guān)節(jié)制造商都希望了解TKA術(shù)后患者肢體的運(yùn)動(dòng)學(xué)與動(dòng)力學(xué)狀態(tài),以及TKA假體在人體內(nèi)的運(yùn)動(dòng)情況及力學(xué)表現(xiàn)。目前雖然有活體內(nèi)直接的力學(xué)測量方法,但卻因技術(shù)實(shí)施困難,存在難以廣泛開展的弊端。計(jì)算機(jī)模型可以模擬很多實(shí)驗(yàn)室無法完成的機(jī)械過程及分析運(yùn)算,成為促進(jìn)TKA設(shè)計(jì)和改良的重要工具。隨著計(jì)算機(jī)硬件不斷升級(jí)發(fā)展,計(jì)算機(jī)三維模型越來越精細(xì),三維模型的動(dòng)態(tài)化力學(xué)研究也得以實(shí)現(xiàn)。通過建立動(dòng)態(tài)化膝關(guān)節(jié)三維有限元模型(Finite Element Method Model,FEM Model),模擬TKA術(shù)后膝關(guān)節(jié)活動(dòng)的力學(xué)狀態(tài)及變化規(guī)律成為TKA力學(xué)研究的重要手段。然而三維有限元分析最大的問題是實(shí)驗(yàn)條件的設(shè)置具有較大爭議,與假體在人體內(nèi)的實(shí)際受力有較大偏差,更不能實(shí)現(xiàn)個(gè)性化臨床病例的分析。步態(tài)分析(gait analysis)則是通過不同手段對個(gè)體活動(dòng)方式進(jìn)行的檢查和評(píng)估,是對人體活動(dòng)的量化。量化性步態(tài)分析是辨別正常與異常步態(tài)的重要臨床工具,已經(jīng)被長時(shí)間應(yīng)用于臨床病情評(píng)估、制訂治療策略和治療效果評(píng)價(jià)。通過步態(tài)檢查采集的數(shù)據(jù)計(jì)算關(guān)節(jié)活動(dòng)的軌跡和活動(dòng)中關(guān)節(jié)的受力情況,可用來間接反映TKA術(shù)后關(guān)節(jié)的運(yùn)動(dòng)學(xué)與動(dòng)力學(xué)狀態(tài)。多體系統(tǒng)動(dòng)力學(xué)(multi-bodydynamics,mbd)是研究多體系統(tǒng)運(yùn)動(dòng)規(guī)律的科學(xué),研究對象一般包括若干個(gè)柔性和剛性物體,相互連接構(gòu)成一個(gè)整體結(jié)構(gòu)。人體多體動(dòng)力學(xué)建?梢赃M(jìn)行步態(tài)周期內(nèi)肌肉活動(dòng)和關(guān)節(jié)接觸力的分析,幫助我們理解肌肉協(xié)調(diào)工作的原理,同時(shí)了解骨骼和軟組織的受力情況,在建立的模型基礎(chǔ)上還可進(jìn)一步優(yōu)化改進(jìn),完成假體微動(dòng)分析、假體受力狀態(tài)分析和體內(nèi)聚乙烯磨損預(yù)測等應(yīng)用研究。骨骼肌肉多體動(dòng)力學(xué)模型預(yù)測的關(guān)節(jié)力和關(guān)節(jié)運(yùn)動(dòng)可輸出至有限元軟件進(jìn)行后續(xù)分析,通過該方式獲取的應(yīng)力應(yīng)變是研究人工膝關(guān)節(jié)假體磨損的重要參數(shù)依據(jù)。多體動(dòng)力學(xué)模型考慮了患者骨骼的幾何形態(tài)、人工關(guān)節(jié)假體設(shè)計(jì),以及關(guān)節(jié)周圍肌肉和韌帶的情況,能同時(shí)計(jì)算出關(guān)節(jié)運(yùn)動(dòng)、關(guān)節(jié)接觸力、肌肉力和韌帶力。上述結(jié)果參數(shù)作為邊界條件輸入到有限元軟件中才能反映假體在人體內(nèi)的真實(shí)受力情況。綜上,結(jié)合人體多體動(dòng)力學(xué)模型和有限元分析的建模方法可很好地理解人工膝關(guān)節(jié)的在體受力情況,為改善假體設(shè)計(jì)和臨床病例個(gè)案分析提供理論依據(jù)。本研究的核心內(nèi)容分為兩個(gè)部分:第一部分是采取三維步態(tài)分析技術(shù)對全膝關(guān)節(jié)置換術(shù)后患者步態(tài)參數(shù)的改變進(jìn)行量化對比,以探明tka手術(shù)對人體步態(tài)和肢體功能的影響,屬于觀察性研究;第二部分是嘗試通過患者骨骼幾何模型、假體三維數(shù)據(jù)和步態(tài)分析數(shù)據(jù)建立個(gè)性化骨骼肌肉多體動(dòng)力學(xué)模型,以期能更精確地描述關(guān)節(jié)活動(dòng),并預(yù)測關(guān)節(jié)內(nèi)受力情況,彌補(bǔ)關(guān)節(jié)內(nèi)受力無法在體外測量的缺陷,屬于探索性研究。研究方法1、全膝關(guān)節(jié)置換術(shù)后的三維步態(tài)分析研究我們使用了捕捉反光標(biāo)記三維活動(dòng)軌跡的動(dòng)作捕捉系統(tǒng)、用于采集地面反作用力的測力臺(tái)和皮膚表面肌電采集裝置進(jìn)行三維步態(tài)數(shù)據(jù)的采集。采集到的數(shù)據(jù)包括身體各個(gè)部分的相對位置與方向、足與地面的作用力、時(shí)間-空間關(guān)系和下肢肌肉的階段性活動(dòng)。囑患者以日常行走速度在步道上來回走動(dòng),雙足均完全踩到測力臺(tái)為一次有效數(shù)據(jù),每位患者采集5至8次有效數(shù)據(jù)。肌電信號(hào)與測力臺(tái)模擬信號(hào)數(shù)據(jù)通過統(tǒng)一的工作平臺(tái)同步收集。然后使用cortex實(shí)時(shí)操作分析軟件定義各個(gè)光點(diǎn),提取每個(gè)點(diǎn)的三維空間坐標(biāo),利用空間幾何的方法計(jì)算出步態(tài)參數(shù),結(jié)合測試前采集的患者形態(tài)數(shù)據(jù)進(jìn)行參數(shù)調(diào)整與優(yōu)化。輸出結(jié)果包括空間參數(shù)、關(guān)節(jié)反作用力、關(guān)節(jié)活動(dòng)角度和肌肉活動(dòng)信號(hào),所有參數(shù)在術(shù)側(cè)術(shù)側(cè)之間對比。2、全膝關(guān)節(jié)置換術(shù)個(gè)性化多體動(dòng)力學(xué)建模我們使用了一例接受全膝關(guān)節(jié)置換術(shù)患者的完整數(shù)據(jù)建立個(gè)性化骨骼肌肉多體動(dòng)力學(xué)模型,數(shù)據(jù)包括ct掃描三維重建獲取的骨骼幾何模型、三坐標(biāo)儀掃描獲取的人工關(guān)節(jié)假體三維模型、三維步態(tài)分析數(shù)據(jù)等,基于“依賴于力的運(yùn)動(dòng)學(xué)”(fdk方法)和彈性基理論,將人工膝關(guān)節(jié)假體整合到了下肢骨骼肌肉模型中,建立tka術(shù)后下肢骨骼多體動(dòng)力學(xué)模型,預(yù)測置換后膝關(guān)節(jié)在步態(tài)周期內(nèi)的屈伸活動(dòng)、關(guān)節(jié)力矩及脛股關(guān)節(jié)和髕股關(guān)節(jié)的接觸力。結(jié)果1、全膝關(guān)節(jié)置換術(shù)后的三維步態(tài)分析研究步態(tài)空間時(shí)間參數(shù)在術(shù)側(cè)與健側(cè)之間的差異都沒有統(tǒng)計(jì)學(xué)意義(p0.05)。術(shù)側(cè)髖、膝、踝三個(gè)關(guān)節(jié)的關(guān)節(jié)反作用力均值都較健側(cè)有所減小,但差異沒有統(tǒng)計(jì)學(xué)意義(p0.05)。與健側(cè)相比,術(shù)側(cè)髖關(guān)節(jié)屈伸活動(dòng)范圍沒有改變,但最大屈曲角和最大伸直角都明顯較小,且差異具有統(tǒng)計(jì)學(xué)意義(分別為p=0.039,p0.001);術(shù)側(cè)髖關(guān)節(jié)最大外旋角增大,但差異沒有統(tǒng)計(jì)學(xué)意義(p=0.446),最大內(nèi)旋角和旋轉(zhuǎn)活動(dòng)度較健側(cè)都有減小,且差異具有統(tǒng)計(jì)學(xué)意義(p0.001)。術(shù)側(cè)與健側(cè)在膝關(guān)節(jié)最大屈曲角和屈伸活動(dòng)度上與健側(cè)沒有明顯差異(p=0.185,p=0.194),但術(shù)側(cè)最大伸直角較健側(cè)增大(即最大伸直度減小),差異具有統(tǒng)計(jì)學(xué)意義(p0.001);術(shù)側(cè)最大外翻角及膝關(guān)節(jié)內(nèi)外翻活動(dòng)范圍大于健側(cè),差異具有統(tǒng)計(jì)學(xué)意義(p=0.023,p=0.002),最大內(nèi)翻角在雙側(cè)無差異;脛骨最大內(nèi)旋角在術(shù)側(cè)顯著減少(p=0.025),但最大外旋角和旋轉(zhuǎn)活動(dòng)范圍在雙側(cè)無顯著差異。踝關(guān)節(jié)最大背屈角、最大跖屈角和屈伸活動(dòng)度在兩側(cè)間對比沒有顯著差異(p=0.286,p=0.780,p=0.151);距下關(guān)節(jié)的翻轉(zhuǎn)運(yùn)動(dòng)在兩側(cè)之間存在較大差異,其中術(shù)側(cè)最大外翻角和最大內(nèi)翻角都都比健側(cè)增大(p=0.012,p0.001),翻轉(zhuǎn)活動(dòng)度顯著減小(p0.001)。雙側(cè)臀大肌信號(hào)沒有變化,股內(nèi)側(cè)肌、乆繩肌在術(shù)側(cè)增強(qiáng),腓腸肌在術(shù)側(cè)減弱,差異沒有統(tǒng)計(jì)學(xué)意義(p0.05);脛前肌在術(shù)側(cè)減弱,信號(hào)峰值的差異有統(tǒng)計(jì)學(xué)意義(p=0.036)。2、全膝關(guān)節(jié)置換術(shù)個(gè)性化多體動(dòng)力學(xué)建模我們成功建立了個(gè)性化骨骼肌肉多體動(dòng)力學(xué)模型,預(yù)測了置換后膝關(guān)節(jié)在步態(tài)周期內(nèi)的屈伸活動(dòng)、關(guān)節(jié)力矩及脛股關(guān)節(jié)和髕股關(guān)節(jié)的接觸力。結(jié)果發(fā)現(xiàn)術(shù)側(cè)脛股關(guān)節(jié)和髕股關(guān)節(jié)的最大屈曲角度沒有明顯差異,而最大伸直活動(dòng)度都較健側(cè)降低。術(shù)側(cè)膝關(guān)節(jié)三個(gè)方向力矩較健側(cè)均呈現(xiàn)增高的趨勢,其中屈(伸)力矩峰值增高約59.2%,內(nèi)收(外展)力矩增高約18.6%,內(nèi)旋(外旋)力矩增高趨勢最低,約3.5%。術(shù)側(cè)脛股關(guān)節(jié)和髕股關(guān)節(jié)接觸力較健側(cè)降低,其中脛股關(guān)節(jié)下降約5.8%,髕股關(guān)節(jié)下降約20.5%。結(jié)論1、采取了基于紅外動(dòng)作捕捉的三維步態(tài)分析技術(shù)對全膝關(guān)節(jié)置換術(shù)后患者步態(tài)狀態(tài)進(jìn)行了分析。結(jié)果顯示TKA沒有對步態(tài)空間-時(shí)間參數(shù)產(chǎn)生影響,換言之TKA術(shù)后12個(gè)月后患者行走功能基本恢復(fù)正常;但關(guān)節(jié)運(yùn)動(dòng)結(jié)果顯示術(shù)側(cè)膝關(guān)節(jié)較患側(cè)存在一定的伸直受限,術(shù)后膝關(guān)節(jié)內(nèi)外翻運(yùn)動(dòng)和內(nèi)外旋運(yùn)動(dòng)同樣產(chǎn)生了改變,進(jìn)而引發(fā)髖關(guān)節(jié)、踝關(guān)節(jié)的運(yùn)動(dòng)學(xué)繼發(fā)改變。表面肌電檢測結(jié)果提示患側(cè)股四頭肌和乆繩肌活動(dòng)加強(qiáng),提示TKA術(shù)后膝關(guān)節(jié)穩(wěn)定減弱,需要調(diào)動(dòng)更多的肌肉來維持關(guān)節(jié)的動(dòng)態(tài)平衡。三維步態(tài)分析作為一種客觀性、量化性的評(píng)測手段,非常適合作為現(xiàn)行臨床評(píng)估的補(bǔ)充,為臨床決策提供更多額外信息。2、基于FDK方法和彈性基理論,將人工膝關(guān)節(jié)假體整合到了下肢骨骼肌肉模型中,實(shí)現(xiàn)了精確的下肢骨骼建模,考慮了關(guān)節(jié)周圍韌帶的穩(wěn)定作用,預(yù)測了TKA術(shù)后膝關(guān)節(jié)運(yùn)動(dòng)、脛股關(guān)節(jié)接觸力和髕股關(guān)節(jié)接觸力。結(jié)果發(fā)現(xiàn)術(shù)側(cè)脛股關(guān)節(jié)和髕股關(guān)節(jié)的最大屈曲角度沒有明顯差異,而最大伸直活動(dòng)度都較健側(cè)降低;術(shù)側(cè)膝關(guān)節(jié)三個(gè)方向力矩較健側(cè)均呈現(xiàn)增高的趨勢;術(shù)側(cè)脛股關(guān)節(jié)和髕股關(guān)節(jié)接觸力較健側(cè)降低。該模型在進(jìn)一步優(yōu)化之后可推廣到任何個(gè)性化人工膝關(guān)節(jié)置換術(shù)后的生物力學(xué)研究中,具有較好的通用性,為臨床結(jié)果評(píng)估、假體設(shè)計(jì)、假體磨損分析等研究提供有效的途徑和方法。
[Abstract]:Background artificial total knee arthroplasty (Total Knee Arthroplasty, TKA) is a "gold standard" for the treatment of end stage osteoarthritis of the knee (Osteoarthritis, OA), which can relieve pain and reconstruct motor function. In the first half of the century, the study of implant life for artificial joint replacement was mostly focused on prosthesis material science. Although the study of artificial joint materials is of great value to further prolonging the life span of the implant, clinicians gradually realize that the geometric design of the prosthesis and its effect on the movement function of the patient are very important to the surgical effect and patient satisfaction. There is a constant improvement in the design of the prosthesis, but almost all kinds of studies suggest that the knee joint can not fully achieve the healthy and natural knee joint movement after TKA. Therefore, the kinematic and dynamic assessment of the patients with knee arthroplasty can determine the effect of TKA on the kinematics of the joint, and provide reference for clinical diagnosis and treatment, and can provide reference for the clinical diagnosis and treatment. As an evaluation index of postoperative curative effect, both clinicians and artificial joint manufacturers want to know the kinematics and dynamics of the limbs of the patients after TKA, as well as the movement and mechanical performance of the TKA prosthesis in the human body. Although there is a direct mechanical measurement in the living body, it is difficult to carry out a wide range of techniques because of the difficulties in the implementation of the technique. The computer model can simulate the mechanical process and analysis of many laboratories which can not be completed. It has become an important tool to promote the design and improvement of TKA. With the continuous upgrading and development of computer hardware, the three-dimensional model of the computer is becoming more and more fine, and the dynamic mechanical research of the 3D model is also realized. The three-dimensional finite element model (Finite Element Method Model, FEM Model) is an important means to simulate the mechanical state and change of the knee joint activities after TKA operation. However, the biggest problem of the three-dimensional finite element analysis is that the setting of the experimental conditions is very controversial, and the actual force of the prosthesis in the human body is much more deviant from the actual force of the prosthesis. The analysis of individual clinical cases can not be realized. Gait analysis (gait analysis) is an examination and evaluation of individual activity by different means. It is the quantification of human activity. Quantitative gait analysis is an important clinical tool to distinguish normal and abnormal gait. It has been applied to clinical condition assessment for a long time and has been formulated for treatment. The evaluation of strategy and treatment effect. Through the data collected by gait examination, the trajectory of joint activity and the force of joint in activity are calculated, which can be used to indirectly reflect the kinematic and dynamic state of the joint after TKA. Multi-bodydynamics (MBD) is the science of studying the motion law of multibody system. It includes several flexible and rigid objects, which are connected to a whole structure. The dynamic modeling of human body multibody dynamics can carry out the analysis of muscle activity and joint contact force in the gait cycle. It helps us understand the principle of muscle coordination and understanding the force of bone and soft tissue, and can be further developed on the basis of the model established. The study of prosthesis fretting analysis, prosthesis stress state analysis and polyethylene wear prediction in vivo. The joint force and joint motion predicted by the skeletal muscle multibody dynamics model can be output to the finite element software for subsequent analysis. The stress and strain obtained through this method are the weight of the study of the weight of artificial knee joint prosthesis. The multibody dynamic model takes into account the geometric shape of the bone, the design of the prosthesis, the muscles and ligaments around the joint, and the joint motion, the joint contact force, the muscle force and the ligament force are calculated at the same time. The above result parameters are input into the finite element software as the boundary strip to reflect the prosthesis in human The actual stress situation in the body. Combined with the human body multibody dynamic model and the modeling method of finite element analysis, the stress situation of the artificial knee joint can be well understood. It provides the theoretical basis for the improvement of the prosthesis design and the case analysis of clinical cases. The core of this study is divided into two parts: the first part is to take the three-dimensional gait. The analysis technique was used to quantify the changes of gait parameters after total knee replacement. The effect of TKA operation on human gait and limb function was observed. The second part was an attempt to establish the multi-body dynamics of the individual skeletal muscle through the bone geometric model of the patient, the three-dimensional data of the prosthesis and the gait analysis data. Model, in order to describe the joint activity more accurately, and predict the stress in the joint, make up for the defect that the intra-articular force can not be measured in vitro, it is an exploratory study. Method 1, three dimensional gait analysis after total knee replacement. Collection of three dimensional gait data of the ground surface reaction force and skin surface electromyography. The data collected include the relative position and direction of the body parts, the force of the foot and the ground, the time space relationship and the stage activity of the lower limb muscles. Both feet are completely stepped on the dynamometer for an effective data, each patient takes 5 to 8 effective data. The EMG signal and the analogue signal data of the dynamometer are collected synchronously through a unified working platform. Then the cortex real-time operation analysis software is used to define the various light points, and the three-dimensional space coordinates of each point are extracted, and the method of space geometry is used. The parameters of the gait were calculated, and the parameters were adjusted and optimized with the patient's morphological data collected before the test. The output results included space parameters, joint reaction force, joint motion angle and muscle activity signal. All parameters were compared between the side of the operation side.2, and the individualized multi body dynamic modeling of total knee arthroplasty was used for one case. A personalized skeletal muscle multibody dynamic model was established by the complete data of total knee arthroplasty. The data included the skeletal geometric model obtained by CT scan three-dimensional reconstruction, the 3D model of artificial joint prosthesis obtained by the three coordinate scanner, the 3D gait analysis data, and so on, based on the "FDK method" and the elastic base. The artificial knee joint prosthesis was integrated into the skeletal muscle model of the lower extremities, and the multibody dynamic model of the lower extremities after TKA was established to predict the flexion and extension activities of the knee joint in the gait cycle, the joint torque and the contact force of the tibial joint and patellar joint. Results 1, the gait analysis of the three dimensional gait after total knee replacement was used to study the gait. There was no significant difference between the space time parameters between the side and the healthy side (P0.05). The mean of the three joints in the hip, knee and ankle was less than the healthy side, but the difference was not statistically significant (P0.05). The range of flexion and extension of the hip joint was not changed, but the maximum flexion angle and maximum extension were not changed. The angles were smaller, and the difference was statistically significant (p=0.039, p0.001). The maximum external rotation angle of the hip joint increased, but the difference was not statistically significant (p=0.446), the maximum internal rotation angle and the rotation activity were decreased compared with the healthy side, and the difference was statistically significant (p0.001). The maximum flexion angle and flexion and extension of the knee joint and the healthy side were in the knee joint. There was no significant difference between the activity and the healthy side (p=0.185, p=0.194), but the maximum extension angle of the operation was more significant than that of the healthy Ce Zengda (p0.001). The difference was statistically significant (p=0.023, p=0.002), and the maximum angle of varus was not bilateral. The maximum internal rotation angle of the tibia decreased significantly on the side of the operation (p=0.025), but there was no significant difference between the maximum external rotation angle and the rotation range. The maximum flexion angle of the ankle joint, the maximum flexion angle and the flexion and extension activity were not significantly different between the two sides (p=0.286, p=0.780, p= 0.151), and the overturn movement of the lower joint existed between the two sides. The difference, the maximum angle of valgus and the maximum angle of varus were all larger than the healthy side (p=0.012, p0.001), and the turnover activity decreased significantly (p0.001). The signal of bilateral gluteus maximus did not change, the medial femoral muscle, the muscle of the cords were increased on the side of the operation, the gastrocnemius muscle was weakened on the side of operation (P0.05); the anterior tibial muscle weakened in the side of the operation and the peak signal The difference was statistically significant (p=0.036).2. The individualized multi body dynamic modeling of total knee arthroplasty was established. We successfully established a multi-body dynamic model of the individual skeletal muscle, and predicted the flexion and extension of the knee joint in the gait cycle, the joint torque and the contact force of the tibial joint and patellofemoral joint. The maximum flexion angle of the patellofemoral joint was not significantly different, and the maximum extension activity was lower than the healthy side. The three directions of the knee joint showed an increasing trend in the lateral knee joint. The peak torque of the flexion (extension) increased about 59.2%, the adductor (abduction) moment increased by about 18.6%, and the internal rotation (external rotation) increased the lowest, about 3.5%. lateral tibia. The contact force of the femoral joint and patellar joint was lower than the healthy side, in which the tibial joint decreased by about 5.8% and the patellar joint decreased by about 20.5%. 1. The three dimensional gait analysis based on infrared motion capture was used to analyze the gait state of the patients after total knee replacement. The results showed that TKA did not affect the spatial time parameters of the gait. In other words, 12 months after the operation, the walking function of the patient basically recovered 12 months after the operation, but the results of joint movement showed that there was a certain limit of extension of the knee joint on the side of the operation. The movement of the internal and external rotation of the knee joint and the internal and external rotation of the knee also changed, and then the kinematics of the hip joint and the ankle joint was secondary. The results of surface electromyography test were raised. The enhanced activity of the four head and rope muscles in the affected side suggests that the stability of the knee is weakened after TKA, and more muscles should be mobilized to maintain the dynamic balance of the joint. The artificial knee joint prosthesis was integrated into the skeletal muscle model of the lower extremities by the FDK method and the elastic base theory. The accurate bone modeling of the lower extremities was realized. The stability of the ligaments around the joint was considered. The knee joint movement, the tibial joint contact force and the patellar joint contact force after TKA were predicted. The results of the tibial and patellar joint were found. The maximum flexion angle of the joint was not significantly different, but the maximum extension activity was lower than the healthy side, and the three direction torque of the knee joint was higher than that of the healthy side, and the contact force of the tibial joint and patellar joint was lower than the healthy side. The model could be extended to any individual artificial knee replacement after the further optimization. It has good versatility in biomechanical research, and provides effective methods and methods for clinical outcome assessment, prosthesis design and prosthesis wear analysis.
【學(xué)位授予單位】:第三軍醫(yī)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:R687.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡雪艷,惲?xí)云?步態(tài)分析在臨床中的應(yīng)用[J];中國康復(fù)理論與實(shí)踐;2003年11期
2 門洪學(xué);張國棟;吳其常;卞傳華;李曉光;;靴式步態(tài)系統(tǒng)的研制與206名正常青年人步態(tài)分析[J];小兒麻痹研究;1990年02期
3 ;《臨床實(shí)用步態(tài)分析學(xué)》[J];中國康復(fù)醫(yī)學(xué)雜志;1993年06期
4 ;新書介紹——臨床實(shí)用步態(tài)分析學(xué)[J];骨與關(guān)節(jié)損傷雜志;1993年04期
5 ;98篇有關(guān)步態(tài)分析的文獻(xiàn)信息(續(xù)前)(英文)[J];國外醫(yī)學(xué)(物理醫(yī)學(xué)與康復(fù)學(xué)分冊);1998年04期
6 張福金;臨床步態(tài)分析[J];國外醫(yī)學(xué)(物理醫(yī)學(xué)與康復(fù)學(xué)分冊);1999年03期
7 張瑞紅,王人成,金德聞,張濟(jì)川;不同路況下的人體步態(tài)微機(jī)檢測[J];現(xiàn)代康復(fù);2000年05期
8 吳文;異常步態(tài)模仿演示在步態(tài)分析教學(xué)中的價(jià)值[J];中國康復(fù);2001年01期
9 宋蘭欣;步態(tài)分析在神經(jīng)系統(tǒng)疾病患者康復(fù)中的應(yīng)用[J];中國臨床康復(fù);2005年29期
10 孫嘉利;唐丹;鐘世鎮(zhèn);;三維步態(tài)分析的研究與應(yīng)用[J];中國組織工程研究與臨床康復(fù);2007年05期
相關(guān)會(huì)議論文 前10條
1 張麗艷;高艷鳳;王振玲;;偏癱病人的步態(tài)分析[A];中國康復(fù)醫(yī)學(xué)會(huì)第三次康復(fù)治療學(xué)術(shù)大會(huì)論文匯編[C];2002年
2 王連成;許世波;;步態(tài)分析測試在老年人跌到風(fēng)險(xiǎn)評(píng)估中的應(yīng)用[A];中國康復(fù)醫(yī)學(xué)會(huì)運(yùn)動(dòng)療法分會(huì)第十一屆全國康復(fù)學(xué)術(shù)大會(huì)學(xué)術(shù)會(huì)議論文摘要匯編[C];2011年
3 岳雨珊;俞君;朱毅;;三維步態(tài)分析的研究進(jìn)展及其局限性[A];首屆全國腦外傷治療與康復(fù)學(xué)術(shù)大會(huì)論文匯編(下)[C];2011年
4 朱波;王志彬;;步態(tài)分析方法在臨床治療與康復(fù)中的應(yīng)用[A];第11屆全國中西醫(yī)結(jié)合骨傷科學(xué)術(shù)研討會(huì)論文匯編[C];2003年
5 曾仁迪;陳德請;李世文;;紅外光技術(shù)于步態(tài)分析上的應(yīng)用[A];2005年海峽兩岸三地?zé)o線科技學(xué)術(shù)會(huì)論文集[C];2005年
6 程梟;;常見中樞性運(yùn)動(dòng)控制障礙異常步態(tài)的分析與訓(xùn)練[A];2013浙江省物理醫(yī)學(xué)與康復(fù)學(xué)學(xué)術(shù)年會(huì)暨第八屆浙江省康復(fù)醫(yī)學(xué)發(fā)展論壇論文集[C];2013年
7 黃燕平;范昕;;談步態(tài)分析[A];第12屆全國運(yùn)動(dòng)生物力學(xué)學(xué)術(shù)交流大會(huì)論文匯編[C];2008年
8 侯來永;謝欲曉;孫啟良;;偏癱患者異常步態(tài)的矯正訓(xùn)練[A];第四屆全國康復(fù)治療學(xué)術(shù)大會(huì)論文摘要匯編[C];2004年
9 周謀望;叢曉東;;全膝關(guān)節(jié)置換術(shù)后早期康復(fù)[A];2002年第9屆全國運(yùn)動(dòng)醫(yī)學(xué)學(xué)術(shù)會(huì)議論文摘要匯編[C];2002年
10 金思東;諸葛天瑜;王西迅;李恩典;吳曉君;孫捷;何建軍;袁浩;;全膝關(guān)節(jié)置換術(shù)治療膝關(guān)節(jié)骨性關(guān)節(jié)炎[A];浙江省中西醫(yī)結(jié)合學(xué)會(huì)骨傷科專業(yè)委員會(huì)第十一次學(xué)術(shù)年會(huì)暨省級(jí)繼續(xù)教育學(xué)習(xí)班論文匯編[C];2005年
相關(guān)重要報(bào)紙文章 前2條
1 楊力勇 吳玉璽;神經(jīng)疾病步態(tài)分析技術(shù)獲突破[N];健康報(bào);2006年
2 陳書連;全膝關(guān)節(jié)置換術(shù)適合哪些人[N];家庭醫(yī)生報(bào);2005年
相關(guān)博士學(xué)位論文 前10條
1 熊然;全膝關(guān)節(jié)置換術(shù)后三維步態(tài)分析與個(gè)性化多體動(dòng)力學(xué)建模初步探索[D];第三軍醫(yī)大學(xué);2017年
2 朱世兵;基于遷移行為、食性分析的貂熊冬季生境利用和評(píng)價(jià)[D];東北林業(yè)大學(xué);2015年
3 韓云峰;楔形平面及鞋墊對直立及步態(tài)中下肢生物力學(xué)的影響[D];北京體育大學(xué);2016年
4 蘇海龍;步態(tài)失穩(wěn)行為機(jī)理及其綜合評(píng)價(jià)性態(tài)指標(biāo)研究[D];天津大學(xué);2013年
5 趙凌燕;人體步態(tài)模型實(shí)驗(yàn)研究[D];哈爾濱工程大學(xué);2008年
6 吳延平;組織因子與全膝關(guān)節(jié)置換術(shù)后下肢深靜脈血栓形成的相關(guān)性研究[D];青島大學(xué);2016年
7 張慶猛;全膝關(guān)節(jié)置換術(shù)后翻修原因和診治隨訪研究[D];中國人民解放軍醫(yī)學(xué)院;2016年
8 楊陽;全膝關(guān)節(jié)置換術(shù)患者出、凝血功能的變化及應(yīng)對措施[D];河北醫(yī)科大學(xué);2017年
9 余聯(lián)慶;仿馬四足機(jī)器人機(jī)構(gòu)分析與步態(tài)研究[D];華中科技大學(xué);2007年
10 馬勤勇;基于步態(tài)的身份識(shí)別研究[D];浙江大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 趙爽宇;四足仿生機(jī)器人步態(tài)控制與切換策略分析[D];電子科技大學(xué);2014年
2 季冉;基于慣性傳感器的步態(tài)測量方法研究與實(shí)現(xiàn)[D];大連理工大學(xué);2015年
3 宋佃成;異構(gòu)雙腿行走機(jī)器人步態(tài)對稱性與步態(tài)模式研究[D];東北大學(xué);2013年
4 劉亞平;7~12歲兒童步態(tài)動(dòng)作發(fā)展特征研究[D];河北師范大學(xué);2016年
5 李慧敏;基于機(jī)器視覺的步態(tài)模式識(shí)別與步態(tài)對稱性研究[D];東北大學(xué);2014年
6 顧琳燕;基于步態(tài)分析的運(yùn)動(dòng)康復(fù)評(píng)價(jià)方法研究[D];浙江大學(xué);2016年
7 余俊飛;基于人體腳部靜電的膝關(guān)節(jié)受限步態(tài)分析與分類識(shí)別[D];北京理工大學(xué);2016年
8 茍歡;下肢外骨骼機(jī)器人步態(tài)檢測系統(tǒng)研究[D];北京林業(yè)大學(xué);2016年
9 李茜楠;基于Kinect的異常步態(tài)檢測[D];山東大學(xué);2016年
10 司瑩;基于足底壓力的坡道步態(tài)失穩(wěn)自適應(yīng)平衡研究[D];天津科技大學(xué);2015年
,本文編號(hào):2059738
本文鏈接:http://sikaile.net/yixuelunwen/waikelunwen/2059738.html