股骨頸骨折骨缺損的影像學(xué)及生物力學(xué)研究
本文選題:股骨頸骨折 + 骨缺損 ; 參考:《武漢大學(xué)》2015年博士論文
【摘要】:股骨頸骨折是臨床常見損傷,全球每年有超過100萬起股骨頸骨折。骨折的分型對于診斷、治療方法的選擇、預(yù)后的判斷以及病例總結(jié)分型具有重要的意義。目前常用的股骨頸骨折分型方法有Garden分型、AO分型、Pauwel分型、解剖分型等。不同的分型各有其思路,并能在一定程度上指導(dǎo)臨床。但這些分型都是基于X片的分型,而實(shí)際上骨折可表現(xiàn)為嵌插、內(nèi)外翻、內(nèi)外旋、移位等多種形態(tài),二維的X片并不能準(zhǔn)確描述其復(fù)雜性,基于X片的分型具有一定局限性也在所難免。已有較多學(xué)者認(rèn)識到了三維CT影像對于股骨頸骨折診斷治療的重要性,認(rèn)為它能更好的反映骨折形態(tài)、指導(dǎo)治療,并可能判斷預(yù)后。因此,我們基于CT影像對股骨頸骨折進(jìn)行,并在后繼的工作中判斷及價(jià)值。在對股骨頸骨折CT影像分析的過程中,我們對股骨頸骨折后并發(fā)的骨缺損產(chǎn)生興趣。解剖復(fù)位對于治療股骨頸骨折的重要性毋庸置疑。復(fù)位的標(biāo)準(zhǔn)如Garden指數(shù)主要考慮的是骨折的對線,對于骨折端的嵌插并無要求?墒,對于復(fù)位后Garden指數(shù)良好,卻存在骨折端嵌插、股骨頸短縮的骨折可以被稱為解剖復(fù)位嗎?此類骨折應(yīng)是合并骨量丟失,即骨缺損。因此我們借助CT影像,對股骨頸骨折骨缺損的發(fā)生進(jìn)行了評估。評估結(jié)束后,我們使用尸體骨,制作了股骨頸骨缺損的模型,并采用采用電阻應(yīng)變片測量的方法,對各類缺損進(jìn)行了生物力學(xué)性能的測試,從而評價(jià)各類骨缺損對股骨近段的生物力學(xué)性能的影響。。第一部分150例股骨頸骨折CT影像分析目的:在追求嚴(yán)格的解剖復(fù)位前提下,通過CT影像對股骨頸骨折骨缺損的情況進(jìn)行評估。方法:對我院股骨頸骨折行X線檢查及螺旋CT掃描,剔除陳舊性骨折、病理性骨折以及合并同側(cè)髖臼骨折病例,最后獲得150例合格樣本。所有病例均有掃描厚度為1mm的螺旋CT及三維重建影像。借助CT影像對股骨頸骨折進(jìn)行分類,提出“潛在骨缺損”及“真性骨缺損”的概念,并對各類骨缺損的發(fā)生部位進(jìn)行統(tǒng)計(jì)。依據(jù)CT影像,嚴(yán)格按照Graden分型標(biāo)準(zhǔn),對本組資料進(jìn)行分型,并統(tǒng)計(jì)各型例數(shù)。將以下6種情況認(rèn)為是存在“潛在骨缺損”:1.股骨頸頭下型骨折,頸嵌插入外翻的股骨頭內(nèi),或追求解剖復(fù)位,在糾正外翻的股骨頭時(shí),股骨頸的上方發(fā)生骨缺損;2.骨折原位嵌插,近端皮質(zhì)骨嵌入遠(yuǎn)端松質(zhì)骨內(nèi),復(fù)位后存在股骨頸內(nèi)骨缺損:3.骨折近端內(nèi)收移位,無旋轉(zhuǎn),骨折端相互嵌插,股骨頸下方骨量丟失,復(fù)位后存在內(nèi)下方的骨缺損;4.骨折內(nèi)翻外旋移位,骨折遠(yuǎn)端嵌入近端后側(cè),復(fù)位后存在股骨頸后側(cè)骨缺損;5.骨折內(nèi)翻外旋移位,骨折遠(yuǎn)端嵌入近端后側(cè),復(fù)位后存在股骨頸后側(cè)骨缺損,骨折嵌插程度較重;6.股骨頸基底部骨折剪切移位,復(fù)位后存在股骨頸內(nèi)下方骨缺損。借助CT影像,對“真性骨缺損”骨折碎片發(fā)生部位進(jìn)行分類,將骨折碎片分為“頸前“‘頸內(nèi)下”“頸后”“頸外上”“粉碎性骨折”。結(jié)果:股骨頸骨折CT影像可用于骨缺損的量化評估,具有臨床意義。股骨頸骨折后骨缺損比例較高。存在“潛在骨缺損"99例,占總例數(shù)66.00%,其中36.36%的病例骨缺損情況比較嚴(yán)重。缺損部位以頸后方缺損最為多見(48例,48.5%)存在“真性骨缺損"26例,占17.33%,缺損部位同樣以頸后方缺損最為多見(12例,8.00%)結(jié)論:螺旋CT影像可以直觀、立體的反映骨折、骨缺損形態(tài)。股骨頸骨折“潛在骨缺損”發(fā)生率較高。第二部分不同類型股骨頸骨缺損對股骨近段的生物力學(xué)性能的影響目的:評估幾種股骨頸“真性骨缺損”對股骨近段生物力學(xué)性能的影響。方法:隨機(jī)選擇12個(gè)青壯年尸體的防腐股骨標(biāo)本,X射線攝片及肉眼選擇排除骨折、腫瘤、結(jié)核及先天畸形,去除肌肉、軟組織、關(guān)節(jié)囊、韌帶,將標(biāo)本隨機(jī)分為3組并編號。測試點(diǎn)選擇:①號測試點(diǎn):大轉(zhuǎn)子。②號測試點(diǎn):股骨頸后方。③號測試點(diǎn):后側(cè)股骨頭。④號測試點(diǎn):股骨頭-頸交界處⑤號測試點(diǎn):前側(cè)股骨頭。⑥號測試點(diǎn):小轉(zhuǎn)子。⑦號測試點(diǎn):股骨頭正上方,稍偏外側(cè);⑧號測試點(diǎn):股骨頸內(nèi)側(cè)。同一組4個(gè)股骨,在粘貼電阻應(yīng)力片后,測試各應(yīng)力片的應(yīng)變值。同樣方法測量3次,并記錄其均值。然后將該組股骨制造骨缺損模型,按照同種方法繼續(xù)測試3次,記錄均值,并對比缺損前后的實(shí)驗(yàn)結(jié)果。股骨頸真性骨缺損模型制造方法:股骨頸內(nèi)側(cè)骨缺損模型:沿股骨頸長軸,以股骨頸基底部為起始,在頸內(nèi)側(cè)制造長2CM,寬1CM的矩形骨缺損。股骨頸上方骨缺損模型:沿股骨頸長軸,以股骨頸基底部為起始,在頸上方制造長2CM,寬1 CM的矩形骨缺損。股骨頸后方骨缺損模型:沿股骨頸長軸,在頸后方偏上方,制造長2CM,寬1CM的矩形骨缺損結(jié)果:股骨頸內(nèi)側(cè)骨缺損:600N情況下,①~⑦號測試點(diǎn)應(yīng)變值分別增大了25.78%,21.52%,7.30%,29.96%,-18.16%,8.90%,19.34%,以④號測試點(diǎn)最大。股骨頭處應(yīng)力改變以⑦號測試點(diǎn)(股骨頭正上方)最大(19.34%)。1200N情況下,①~⑦號測試點(diǎn)應(yīng)變值分別增大了24.01%,54.3%,12.83%,29.68%,-16.01%,15.78%,31.33%,以②號測試點(diǎn)最大。股骨頭處應(yīng)力改變以⑦號(股骨頭正上方)最大。股骨頸內(nèi)側(cè)骨缺損:股骨頸外上方缺損,600N(單倍體重)情況下,1-8號測試點(diǎn)應(yīng)變值分別增大了34.30%,61.69%,-9.01%,5.82%,10.23%,-18.94%,-4.13%,-10.39%。1200N情況下,①~⑧號測試點(diǎn)應(yīng)變值分別增大了31.67%,122.41%,-7.63%,1.51%,14.20%,-12.14%,13.02%,13.63%,以②號測試點(diǎn)(股骨頸后方)變化最大。股骨頸后側(cè)缺損:600N情況下,1-8號測試點(diǎn)(無②號)應(yīng)變值分別增大了30.76%,15.79%,24.87%,45.19%,58.85%,37.84%,48.60%,以⑥號測試點(diǎn)(小轉(zhuǎn)子)最大。股骨頭處應(yīng)力改變以⑤號(前側(cè)股骨頭)最大(45.19%)。在1200N(雙倍體重)∞號測試點(diǎn)(無②號)應(yīng)變值分別增大了61.07%,10.16%,25.42%,0.20%,34.64%,50.74%,48.29%,以①號測試點(diǎn)(大轉(zhuǎn)子)最大。股骨頭處應(yīng)力改變以⑦號(股骨頭正上方)最大結(jié)論:各類股骨頸骨折骨缺損后,均對股骨頸近段生物力學(xué)性能造成改變。在雙倍體重下,頸后方骨缺損對股骨頭正上方應(yīng)力值影響最大,頸內(nèi)側(cè)骨缺損對股骨頭正上方應(yīng)力值影響較大,而頸外上方骨缺損對股骨頭應(yīng)力值影響較小。比較各類股缺損,股骨頸后方骨缺損對股骨頭上方(最常見頭壞死區(qū)域)應(yīng)變值影響最大
[Abstract]:Femoral neck fracture is a common clinical injury. There are more than 1 million femoral neck fractures in the world every year. Fracture classification is of great significance for diagnosis, treatment, prognosis and case summary. The common methods of femoral neck fracture classification are Garden, AO, Pauwel, anatomic, and so on. Each type has its own ideas and can guide the clinic to a certain extent. But these types are based on the classification of X slices, but in fact, the fracture can be manifested as intercalation, internal and external, internal and external rotation, displacement and so on. The two-dimensional X film can not accurately describe its complexity, and the classification based on X film is unavoidable. We recognize the importance of three-dimensional CT imaging for the diagnosis and treatment of femoral neck fractures, think it can better reflect fracture morphology, guide the treatment, and may judge the prognosis. Therefore, we based on the CT image of the femoral neck fracture, and judge and value in the subsequent work. In the process of CT image analysis of the femoral neck fracture, we are right The importance of anatomic reduction for the treatment of femoral neck fractures is unquestionable. The standard of reduction, such as the Garden index, is mainly considering the line of fracture and the insertion of the fracture end. However, for the good Garden index after reduction, there is an intercalated fracture end and a short necked neck of the femur. Can fracture be called anatomic reduction? This type of fracture should be combined with bone loss, or bone defect. Therefore, we have assessed the occurrence of bone defects in the femoral neck fracture with the help of CT images. After the evaluation, we used a cadaver bone to make a model of the bone defect of the femoral neck and used a method of resistance strain gauges to measure all kinds of defects. A test of biomechanical properties was carried out to evaluate the effect of bone defects on the biomechanical properties of the proximal femur. Part one: analysis of the CT image of 150 cases of femoral neck fracture in part 1: To evaluate the condition of the bone defect of the femoral neck fracture by CT image under the premise of strict anatomical reduction. X-ray examination and spiral CT scan of cervical fracture were performed to eliminate old fractures, pathological fractures and cases of ipsilateral acetabular fractures. Finally, 150 qualified samples were obtained. All cases had spiral CT and 3D reconstruction images with a scanning thickness of 1mm. The femoral neck fracture was classified by CT image, and "potential bone defect" and "true" were proposed. The concept of bone defect and the location of all kinds of bone defects were statistically analyzed. According to the CT image, the data were classified strictly according to the Graden classification standard, and the number of cases were counted. The following 6 cases were considered to be "potential bone defect": 1. femoral neck subhead fracture, inlay insertion of the femoral head, or the pursuit of solution. The bone defect occurred above the neck of the femur when the femoral head was corrected by cesarean section. 2. the fracture was inserted in situ, the proximal cortical bone was embedded in the distal cancellous bone, and the femoral neck bone defect was found after reduction: 3. the proximal end of the fracture was displaced, no rotation, intercalation of the fracture end phase, the loss of bone mass below the femoral neck, and the bone deficiency after reduction. 4. fracture entropion translocation, the distal end of the fracture was embedded in the posterior side of the proximal end, and the posterior lateral bone defect of the femur neck was found. 5. the external rotation of the fracture of the femoral neck was shifted, the distal end of the fracture was embedded in the posterior side of the proximal end. The posterior lateral bone defect of the femoral neck was repositioned, the fracture was heavily intercaled; 6. the fracture of the base of the neck of the femur was displaced, and the internal femoral neck was present after reduction. A CT image is used to classify the site of "true bone defect" fracture fragments. The fracture fragments are divided into "anterior cervical" "neck" "neck" "neck" "neck" "comminuted fracture". Results: the CT image of femoral neck fracture can be used for quantitative evaluation of bone defect. It is of clinical significance. Bone deficiency after femoral neck fracture The loss ratio was high. There were 99 cases of "potential bone defect", accounting for 66% of the total cases, of which 36.36% of the cases had serious bone defects. The most common defects in the posterior neck defect (48 cases, 48.5%) were true bone defects in 26 cases, 17.33%, and the most common defects in the rear of the neck (12 cases, 8%) conclusion: spiral CT image can be found. Visual and stereoscopic reflection of fracture and shape of bone defect. The incidence of "potential bone defect" in the femoral neck fracture is higher. Second different types of femoral neck bone defects on the biomechanical properties of the proximal femur. Objective: To evaluate the effect of several femoral neck "genuine bone defects" on the biomechanical properties of the proximal femur. Selection of 12 cadaver specimens, X ray photography and the naked eye selection to exclude fracture, tumor, tuberculosis and congenital malformation, remove muscle, soft tissue, joint capsule, ligament. The specimens were randomly divided into 3 groups and numbered. Test point selection: (1) test point: the rear of the neck of the femur. Bone. Test point: the test point of the femoral head and neck junction: anterior femoral head. 6 test point: small rotor. Test point of the femoral head: the femoral head above, slightly lateral; the test point of the femoral neck: the inside of the neck of the femur. The same group of 4 femurs, after sticking the resistance stress sheet, test the strain values of each stress sheet. The same method measured 3 times, And then the bone defect model of the femur was recorded and then tested 3 times according to the same method, recorded the mean value, and compared the experimental results before and after the defect. The model of the bone defect model of the femoral neck: the model of the medial bone defect of the neck of the femur: along the long axis of the femur neck, the base of the femoral neck was started, and the long 2CM was made inside the neck of the neck. A rectangular bone defect of a wide 1CM. A model of bone defect above the neck of the femur: a rectangular bone defect with long 2CM and 1 CM width above the neck of the femur along the long neck of the femur. The posterior femoral neck bone defect model: the long axis of the femur neck, above the posterior neck of the neck, the result of the long 2CM, wide 1CM bone defect: the medial bone of the femur neck Defect: in the case of 600N, the strain values of the test points were increased by 25.78%, 21.52%, 7.30%, 29.96%, 29.96%, 29.96%, 8.90%, 19.34%, and the maximum of the test point of the number 4. The strain of the femoral head was changed at the maximum (19.34%).1200N of the test point of the femoral head (the top of the femoral head), and the strain values of the test points were increased by 24.01%, 54.3%, 12.83%, 2, respectively. 9.68%, -16.01%, 15.78%, 31.33%, the largest test point of number 2. The stress change at the femoral head is the largest. The femoral neck medial bone defect: the femoral neck defect, 600N (double weight), the 1-8 test point strain value increased 34.30%, 61.69%, -9.01%, 5.82%, 10.23%, -18.94%, -4.13%, -10.39%.1200N situation, respectively. The strain values of test points were increased by 31.67%, 122.41%, -7.63%, 1.51%, 14.20%, 14.20%, 14.20%, 13.02%, 13.63%, respectively. The posterior lateral femoral neck defect: the femoral neck posterior side defect: 600N, the 1-8 test point (no number) strain value increased 30.76%, 15.79%, 24.87%, 45.19%, 58.85%, 37.84%, 48.60%, respectively. The maximum of the test point (small rotors). The maximum stress change at the femoral head (the anterior side of the femoral head) was maximum (45.19%). The strain values of the 1200N (double weight) infinity test point (no number 2) increased by 61.07%, 10.16%, 25.42%, 0.20%, 34.64%, 50.74%, 48.29%, and the maximum of the test point (big rotors). Maximum conclusion: the biomechanical properties of the proximal femoral neck were changed after the bone defect of various femoral neck fractures. Under double weight, the posterior cervical bone defect had the greatest influence on the stress value of the femoral head, and the internal jugular bone defect had a great influence on the stress value of the femoral head, and the stress value of the femoral head above the neck of the neck was the value of the femoral head stress value. Compared with all kinds of femoral defects, the defect in the posterior part of the femoral neck has the greatest influence on the strain value above the femoral head (the most common head necrosis area).
【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:R687.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 梁再卿,黎忠文;肢體骨缺損合并皮膚缺損的顯微外科修復(fù)[J];中華顯微外科雜志;2001年02期
2 張景僚,韓漢平,時(shí)冠軍,趙愛萍,王芳;帶肌蒂腓骨移位治療脛骨骨缺損10例[J];前衛(wèi)醫(yī)藥雜志;2001年06期
3 郭德亮,潘朝暉,張偉旭;吻合血管腓骨移植重建全跟骨缺損一例[J];中華顯微外科雜志;2002年03期
4 郭德亮,潘朝暉,張偉旭;吻合血管腓骨移植重建全跟骨缺損一例[J];中華創(chuàng)傷骨科雜志;2002年01期
5 吳佳奇,張曉剛,王清;骨缺損的基因治療[J];瀘州醫(yī)學(xué)院學(xué)報(bào);2004年03期
6 王學(xué)華,張新正;脛骨骨缺損致腓骨承重14年1例報(bào)告[J];中國矯形外科雜志;2004年11期
7 姜保國;;骨缺損的治療進(jìn)展[J];繼續(xù)醫(yī)學(xué)教育;2006年12期
8 趙基棟;錢寒光;苗宗寧;祝建中;彭瑋;;納米晶羥基磷灰石膠原復(fù)合骨髓間充質(zhì)干細(xì)胞修復(fù)骨缺損(英文)[J];中國組織工程研究與臨床康復(fù);2010年42期
9 賈正中;劉沂;丁占云;高波;崔甲榮;;長骨缺損的治療[J];骨與關(guān)節(jié)損傷雜志;1987年01期
10 鐘賈純,,卓小為,張衡敏,代維立,王蘭,陳振宇;吻合血管的髂骨移植修復(fù)骨缺損骨不連[J];中國修復(fù)重建外科雜志;1994年03期
相關(guān)會(huì)議論文 前10條
1 吳佳奇;張曉剛;;骨缺損的基因治療[A];第11屆全國中西醫(yī)結(jié)合骨傷科學(xué)術(shù)研討會(huì)論文匯編[C];2003年
2 唐輝;徐永清;馬濤;周田華;張秀瓊;林月秋;湯迅;丁晶;李軍;;耐藥金黃色葡萄球菌注射總量對兔感染性骨缺損形成的影響[A];第六屆西部骨科論壇暨貴州省骨科年會(huì)論文匯編[C];2010年
3 楊志;覃育接;譚楨;;神經(jīng)生長因子對大鼠骨缺損愈合影響的研究[A];第十八屆全國中西醫(yī)結(jié)合骨傷科學(xué)術(shù)研討會(huì)論文匯編[C];2011年
4 梁高峰;;游離腓骨骨瓣在上肢骨缺損中的應(yīng)用[A];中華醫(yī)學(xué)會(huì)第10屆全國顯微外科學(xué)術(shù)會(huì)議暨世界首例斷肢再植成功50周年慶典論文集[C];2013年
5 高堪達(dá);王秋根;黃建華;陶杰;李豪青;高偉;李凡;吳小峰;;骨搬運(yùn)技術(shù)在下肢創(chuàng)傷后感染性骨缺損治療中的應(yīng)用[A];第七屆全國創(chuàng)傷學(xué)術(shù)會(huì)議暨2009海峽兩岸創(chuàng)傷醫(yī)學(xué)論壇論文匯編[C];2009年
6 馬寶通;;四肢創(chuàng)傷性骨缺損的治療[A];第十三屆全國中西醫(yī)結(jié)合骨傷科學(xué)術(shù)研討會(huì)論文集[C];2005年
7 吳其常;苗旭漫;張志剛;卞傳華;;下肢創(chuàng)傷性骨缺損的治療[A];第16屆全國脊柱&四肢矯形外科(骨科)康復(fù)學(xué)術(shù)研討會(huì)暨學(xué)習(xí)班論文匯編[C];2007年
8 任凱晶;李小輝;宋立明;畢曉揚(yáng);高志國;;植骨技術(shù)在初次全膝關(guān)節(jié)置換術(shù)骨缺損中的應(yīng)用[A];第十八屆全國中西醫(yī)結(jié)合骨傷科學(xué)術(shù)研討會(huì)論文匯編[C];2011年
9 盧開柏;許永華;楊謙;陳新謙;馬在松;;實(shí)驗(yàn)性骨折骨不連和骨缺損治療的病理學(xué)研究[A];第六屆全國生物醫(yī)學(xué)體視學(xué)學(xué)術(shù)會(huì)議暨第九屆全軍軍事病理學(xué)學(xué)術(shù)會(huì)議、第五屆全軍定量病理學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2005年
10 謝秉局;;骨搬運(yùn)技術(shù)治療下肢大段骨缺損[A];2012年浙江省骨科學(xué)術(shù)年會(huì)論文集[C];2012年
相關(guān)重要報(bào)紙文章 前8條
1 馮琳;骨不連與骨缺損研究獲獎(jiǎng)[N];中國醫(yī)藥報(bào);2002年
2 馮琳;骨不連與骨缺損研究獲軍隊(duì)醫(yī)療成果二等獎(jiǎng)[N];中國高新技術(shù)產(chǎn)業(yè)導(dǎo)報(bào);2001年
3 王根華;用自體骨修復(fù)超長骨缺損[N];健康報(bào);2002年
4 周乙雄;打壓植骨解決骨缺損[N];健康報(bào);2005年
5 京華;超長骨缺損自體修復(fù)術(shù)首獲成功[N];中國醫(yī)藥報(bào);2002年
6 于洋 張兆軍;骨修復(fù)新技術(shù)可提高骨缺損愈合能力和質(zhì)量[N];科技日報(bào);2011年
7 記者 白毅;智能生物材料可修復(fù)骨缺損[N];中國醫(yī)藥報(bào);2011年
8 白毅陳;祖亮;新技術(shù)有望修復(fù)老年性骨缺損[N];中國醫(yī)藥報(bào);2005年
相關(guān)博士學(xué)位論文 前2條
1 錢煒;股骨頸骨折骨缺損的影像學(xué)及生物力學(xué)研究[D];武漢大學(xué);2015年
2 藍(lán)霞;Ilizarov牽張技術(shù)在肢體和骨段延長中的應(yīng)用研究[D];中國人民解放軍醫(yī)學(xué)院;2013年
相關(guān)碩士學(xué)位論文 前10條
1 萬值穎;Ilizarov技術(shù)治療脛骨感染性骨不連及骨缺損的臨床研究[D];昆明醫(yī)科大學(xué);2015年
2 鄭充;骨水泥螺絲釘技術(shù)在初次TKA中重建脛骨骨缺損的臨床及有限元研究[D];中國人民解放軍醫(yī)學(xué)院;2016年
3 李聰杰;應(yīng)用鈦網(wǎng)修復(fù)髖臼大面積骨缺損的生物力學(xué)研究[D];河北醫(yī)科大學(xué);2012年
4 邱明憲;中藥巴布劑“跌創(chuàng)膏”對家兔骨缺損愈合的實(shí)驗(yàn)研究[D];遼寧醫(yī)學(xué)院;2014年
5 孫樹茂;骨搬運(yùn)術(shù)治療脛骨感染性大段骨缺損[D];山東大學(xué);2013年
6 劉彥;全髖關(guān)節(jié)翻修中骨缺損的處理及其療效分析[D];暨南大學(xué);2013年
7 胡忠洲;自體混合植骨治療初次全膝關(guān)節(jié)置換術(shù)中Randc型骨缺損[D];山東大學(xué);2012年
8 陳松;應(yīng)用llizarov技術(shù)治療脛骨骨缺損及感染性骨不連的臨床研究[D];河北醫(yī)科大學(xué);2014年
9 任翔;定制型膝關(guān)節(jié)假體修復(fù)股骨遠(yuǎn)端骨缺損的三維有限元分析[D];四川大學(xué);2007年
10 趙聰;骨形成蛋白-2質(zhì)粒體內(nèi)轉(zhuǎn)染治療牙周骨缺損的實(shí)驗(yàn)研究[D];重慶醫(yī)科大學(xué);2013年
本文編號:1896963
本文鏈接:http://sikaile.net/yixuelunwen/waikelunwen/1896963.html