不同強度跑臺運動對大鼠軟骨下骨結(jié)構(gòu)及成分影響的研究
發(fā)布時間:2018-05-15 03:22
本文選題:跑臺運動 + 大鼠; 參考:《南方醫(yī)科大學(xué)》2015年碩士論文
【摘要】:研究背景骨性關(guān)節(jié)炎是一種退行性關(guān)節(jié)疾病,以漸進性的關(guān)節(jié)損傷為主要特征,最終往往導(dǎo)致患者關(guān)節(jié)疼痛和殘疾,極大地降低患者生活質(zhì)量。骨性關(guān)節(jié)炎的病理過程很復(fù)雜,過去的研究主要集中在軟骨的退變方面,最近軟骨下骨的作用得到了越來越多的重視。事實上,關(guān)節(jié)軟骨與其相鄰的軟骨下骨是緊密耦合的,作為一個單一的功能性單元共同作用。因此目前很多的研究關(guān)注軟骨下骨在骨性關(guān)節(jié)炎進程中的變化,以及在骨性關(guān)節(jié)炎治療中以此結(jié)構(gòu)為靶向的必要性和有效性。骨性關(guān)節(jié)炎是一種多因素疾病。在臨床中,不同原因所致的骨性關(guān)節(jié)炎,其病理過程不盡相同。為了明確軟骨下骨在骨性關(guān)節(jié)炎發(fā)展過程中的作用,以往大量的研究采用不同的動物模型觀察骨性關(guān)節(jié)炎發(fā)生和發(fā)展過程中軟骨下骨的變化,結(jié)果顯示不同類型動物模型中軟骨下骨變化不盡相同,甚至?xí)a(chǎn)生完全相反的變化。盡管軟骨下骨的變化不盡相同,但最終都會導(dǎo)致骨性關(guān)節(jié)炎的發(fā)生,這些結(jié)果提示:軟骨下骨可能存在一種穩(wěn)態(tài)的結(jié)構(gòu),任何破壞這種穩(wěn)態(tài)的行為都會導(dǎo)致軟骨的損傷,最終導(dǎo)致骨性關(guān)節(jié)炎的發(fā)生。機械負荷被認為是肌肉骨骼系統(tǒng)中骨和軟骨內(nèi)穩(wěn)態(tài)的一種調(diào)節(jié)器。以往的證據(jù)表明骨和軟骨都能對機械負荷具有強度依賴性。跑步運動是一種非常常見的負重運動形式,大量的人體及動物試驗探討了跑步運動對骨的影響,但結(jié)論并不一致,運動強度被認為是導(dǎo)致這種不一致結(jié)果的重要因素。我們前期的動物實驗發(fā)現(xiàn):低強度到中等強度的跑步運動能維持軟骨的內(nèi)穩(wěn)態(tài),而高強度的運動則會導(dǎo)致軟骨退化。然而跑步對軟骨下骨的影響,以及與跑步強度的相關(guān)性目前尚不明確,因此本實驗的第一個目的是探討不同強度的跑臺運動對大鼠軟骨下骨顯微結(jié)構(gòu)的影響。本部分將在前期探討不同強度跑步對大鼠關(guān)節(jié)軟骨影響研究的基礎(chǔ)上,采用Micro-CT進一步探討不同強度跑步運動后大鼠脛骨平臺軟骨下骨(包括軟骨下骨板和軟骨下骨松質(zhì)骨)的超微結(jié)構(gòu),并了解不同跑步強度情況下軟骨下骨和軟骨變化的相關(guān)性。以往很多的研究探討了不同情況下軟骨下骨結(jié)構(gòu)和力學(xué)性能的改變,以及其對關(guān)節(jié)軟骨的影響。目前主要是通過Micro-CT掃描骨小梁三維圖像來直接觀察其顯微結(jié)構(gòu),并定量提供與分析三維結(jié)構(gòu)的參數(shù)來對軟骨下骨進行研究。Micro-CT對軟骨下骨的研究包括對骨的量的分析,即骨密度,同時還包括對骨的質(zhì)的分析,即骨小梁的空間與形態(tài)結(jié)構(gòu),如骨小梁間隙(trabecularseparation, Tb.Sp);骨體積分數(shù)(BV/TV),即骨小梁的體積(bone volume, BV)與樣本的總體積(total volume, TV)之比;骨小梁厚度(trabecular thickness, Tb.Th);軟骨下骨板孔隙率(porosity);以及骨小梁各向異性的程度(Degree of Anisotropy, DA)等。盡管采用Micro-CT能反映軟骨下骨超微結(jié)構(gòu)的變化,但軟骨下骨成分如何變化目前尚無報道。拉曼光譜分析法(Raman spectroscopy)是以印度科學(xué)家拉曼的名字命名的一項檢測材料分子成分的技術(shù)。它根據(jù)拉曼散射效應(yīng)原理,對與入射光頻率不同的散射光譜進行分析以得到分子振動、轉(zhuǎn)動等方面信息,以獲取有機物質(zhì)和無機樣本分子成分的信息,它的特點是能通過微創(chuàng)和無損傷的方法對樣品進行定性和定量的分析。它被認為能有效的評估樣本在分子水平的信息,并能以最小的損傷和非侵入的方法應(yīng)用于一些生物樣品的檢測中,比如檢測尿液中葡萄糖含量;體外對人血液中丙肝病毒的檢測;頸動脈和冠狀動脈粥樣硬化;生物材料的骨誘導(dǎo);一些骨疾病的檢測;骨康復(fù)過程中骨合成和整合的檢測以及對骨組織微觀結(jié)構(gòu)成分的檢測。以往很多研究都提到應(yīng)用拉曼光譜定量骨礦化和骨基質(zhì)來評估骨質(zhì)量,拉曼光譜也被不少作者證實能作為一種重要的檢測手段對骨組織成分進行研究。本研究的第二部分將采用拉曼光譜技術(shù)探討不同強度跑步運動后大鼠軟骨下骨成分的變化,從組織成分的角度進-步了解不同跑步強度和軟骨下骨、軟骨變化之間的相關(guān)性。研究目的1.探討不同強度的跑臺運動對大鼠軟骨下骨顯微結(jié)構(gòu)的影響。2.探討不同強度跑步運動對大鼠軟骨下骨成分和力學(xué)特性的影響。研究方法1、實驗動物和運動方案24只180-220gSD大鼠隨機分成四組,不運動組(sedentary control、低強度運動組(low-intensity running group, LIR)、中強度運動組(moderate-intensity running group, MIR)和高強度運動組(high-intensity running group, HIR) 。以不運動組作為對照,運動組(包括低強度運動組、中強度運動組和高強度運動組)動物分別進行8周強度不同的跑臺運動。2.標本處理8周跑臺運動結(jié)束后,使用0.3%戊巴比妥鈉腹腔麻醉后處死,截取每個實驗大鼠雙側(cè)脛骨并去除軟組織,右側(cè)脛骨近端行Micro-CT檢測;使用硬組織切片機(EXAKT 3000 CP Band System, Norderstedt,德國)將左側(cè)脛骨近端標本沿矢狀面垂直切分成外側(cè)和內(nèi)側(cè)二部分。每部分分別在冠狀面3等分點處繼續(xù)沿矢狀面切開,將之分為3小部分,將中間部分標本放入-80℃冰箱中凍存,具體如圖2.1所示。對大鼠左側(cè)脛骨關(guān)節(jié)軟骨的外側(cè)部分和內(nèi)側(cè)部分分別行拉曼光譜分析,檢測前先將標本放入4℃生理鹽水中浸泡12h。拉曼光譜檢測結(jié)束后,將進行過拉曼光譜檢測的標本行硬組織切除術(shù)后,再進行微硬度檢測。3、檢測指標3.1 Micro-CT檢測:對于軟骨下骨板進行分析,承載區(qū)域面積1.04×1.04平方毫米作為感興趣的區(qū)域(region of interest, ROI)(圖1.2),然后使用CT.vol軟件分析和計算,具體分析參數(shù)包括:骨密度、孔隙度和軟骨下骨板厚度。對軟骨下骨松質(zhì)骨的的分析,通過ROI軟件選中一個大小為1.04×1.04×0.52mm3的骨小梁長方體(圖1.4)。具體測量參數(shù)包括:骨小梁厚度、骨體積分數(shù)、骨小梁數(shù)量、骨小梁間隔、連接密度、各向異性的程度和結(jié)構(gòu)模型指數(shù)。3.2拉曼光譜檢測:通過峰值581cm-1與峰值1260cm-1的比率來代表礦物質(zhì)與基質(zhì)的比率;通過峰值1070cm-1與960cm-1的比率來代表碳酸鹽與磷酸鹽的比率;使用960cm-1波峰的半峰全寬的倒數(shù)(full-width half-maximal, FWHM)來代表骨的礦物結(jié)晶度。3.3微硬度檢測:顯微硬度測量采用日本島津公司的HMV-2型號顯微硬度計測定。HMV-2顯微硬度計分別測量脛骨軟骨下骨板和軟骨下骨松質(zhì)骨部位,每個樣本每個部位測量3次,取各個部位3次測量的平均值作為該部位的硬度值。結(jié)果1.不同強度跑步運動對大鼠軟骨下骨板的影響1.1軟骨下骨板Micro-CT結(jié)果:高強度組軟骨下骨板BMD在外側(cè)部位為1.181±0.084g/cm3,內(nèi)側(cè)部位為1.217±0.076g/cm3,均顯著高于不運動組(1.089 ±0.052 g/cm3,1.111±0.084 g/cm3)(p=0.030, p=0.050)。高強度組內(nèi)側(cè)軟骨下骨板厚度(0.271±0.016mm)顯著高于不運動組(0.232±0.043mm)((p=0.037),在外側(cè)部分同樣發(fā)現(xiàn)高強度組軟骨下骨板厚度高于不運動組,但是并沒有出現(xiàn)顯著性差異。高強度組軟骨下骨板孔隙率在外側(cè)部位為28.47±2.43%,內(nèi)側(cè)部位為30.48±1.61%,均顯著低于不運動組(34.69±4.39%,47.22±3.63%)(p=0.047,p=0.001)。然而,與不運動組相比,低強度運動組和中等強度運動組的BMD、軟骨下骨板厚度和孔隙率均無顯著性差異。1.2軟骨下骨板Microhardness結(jié)果顯示:在脛骨軟骨下骨板外側(cè)部位,HIR組的硬度值為49.7±3.24MPa顯著高于SED組46.1±2.61MPa(p=0.001)和MIR組47.3±4.53MPa(p=0.045);LIR和MIR組分別為47.5±2.53MPa和47.3±4.53MPa,盡管較SED組有所增加,但并無顯著性變化。同樣的變化出現(xiàn)也出現(xiàn)在軟骨下骨板內(nèi)側(cè)部位,HIR組的硬度值為52.27±2.64MPa顯著高于SED組47.92±2.41MPa(p:0.002);LIR組和MIR組分別為48.51±2.61MPa和46.77±3.18MPa,與SED組相比并無顯著性變化。1.3軟骨下骨板拉曼結(jié)果顯示:高強度組外側(cè)和內(nèi)側(cè)部分礦物質(zhì)/基質(zhì)分別顯著性低于不運動組外側(cè)和內(nèi)側(cè)(p=0.021,p=0.028),說明軟骨下骨板礦化程度降低。高強度組內(nèi)側(cè)部分碳酸鹽/磷酸鹽顯著性高于不運動組(p=0.004),磷酸鹽/蛋白質(zhì)則顯著性低于不運動組(p=0.032),這說明高強度組軟骨下骨板重塑增加。高強度組外側(cè)和內(nèi)側(cè)部分礦物質(zhì)結(jié)晶度顯著性高于不運動組外側(cè)和內(nèi)側(cè)(p=0.002,p=0.006)。拉曼光譜數(shù)據(jù)表明與不運動組相比,高強度組重塑和礦物結(jié)晶度增加,礦化程度降低。2.不同強度跑步運動對大鼠軟骨下骨松質(zhì)骨的影響2.1軟骨下骨松質(zhì)骨Micr0.CT結(jié)果:與不運動組相比,高強度組外側(cè)(p=0.035)和內(nèi)側(cè)(p=0.002)部分BMD顯著性增加。高強度組內(nèi)側(cè)部位BV/TV顯著性高于不運動組(p=0.026),表明運動對松質(zhì)骨的成骨起到了刺激作用。此外,高強度組外側(cè)和內(nèi)側(cè)部分松質(zhì)骨厚度分別顯著高于不運動組外側(cè)(p=0.012)和內(nèi)側(cè)(p=0.027),松質(zhì)骨分離度在內(nèi)側(cè)部分低于不運動組(p=0.047)。通過高強度組SMI和CD的降低,我們發(fā)現(xiàn)高強度組松質(zhì)骨發(fā)生了板狀結(jié)構(gòu)改變。另一方面,除了中等強度組內(nèi)側(cè)部分BMD顯著高于不運動組(p=0.004),外側(cè)部分Tb.N顯著高于不運動組(p=0.021)以及低強度組內(nèi)側(cè)部分Tb.N顯著高于不運動組(p=0.032),低強度組和中等強度組均與不運動組無顯著性差異。2.2軟骨下骨松質(zhì)骨Microhardness結(jié)果顯示:在脛骨軟骨下骨松質(zhì)骨外側(cè)部位,H1R組的硬度值為48.26±4.24MPa,顯著高于SED組45.42± 2.61MPa(p=O.031),LIR組和MIR組分別46.35±2.53MPa和45.14±3.21MPa,與SED組相比無顯著性變化。在軟骨下骨松質(zhì)骨內(nèi)側(cè)部位,各組間均未出現(xiàn)顯著性變化。2.3軟骨下骨松質(zhì)骨拉曼結(jié)果顯示:高強度組內(nèi)側(cè)部分礦物質(zhì)/基質(zhì)顯著低于不運動組(p=0.033),說明高強度組松質(zhì)骨礦化程度較不運動組低。與不運動組相比,高強度組內(nèi)側(cè)部分碳酸鹽/磷酸鹽顯著增高(p=0.002),說明高強度組松質(zhì)骨重塑增加。高強度組外側(cè)和內(nèi)側(cè)部分礦物質(zhì)結(jié)晶度都顯著高于不運動組外側(cè)(p=0.006)和內(nèi)側(cè)(p=0.002)部分?偟膩碚f,與軟骨下骨板類似,高強度組的結(jié)果表明相比于不運動組,其重塑和結(jié)晶度增加,而礦化程度降低。結(jié)論第一部分結(jié)論不同強度跑臺運動對大鼠軟骨下骨顯微結(jié)構(gòu)的影響具有強度依賴性:低強度和中強度的跑步運動對大鼠軟骨下骨顯微結(jié)構(gòu)的影響不顯著,高強度的跑步運動則顯著改變軟骨下骨的顯微結(jié)構(gòu),這種改變被認為與我們前期研究證實的軟骨下骨上覆蓋的關(guān)節(jié)軟骨退行性改變相關(guān)聯(lián)。第二部分結(jié)論不同強度跑臺運動對大鼠軟骨下骨成分和力學(xué)特性的影響也具有強度依賴性。低強度和中強度跑步運動對軟骨下骨成分和力學(xué)特性無明顯影響,但高強度跑步運動導(dǎo)致軟骨下骨成分改變,使其變得“硬化和易碎”,進而影響相鄰軟骨的健康。
[Abstract]:Background osteoarthritis is a degenerative joint disease characterized by progressive joint injury, which eventually leads to patients' joint pain and disability, which greatly reduces the patient's quality of life. The pathological process of osteoarthritis is complex. In the previous study, the cartilage degeneration, and the recent subchondral bone in the main collection. In fact, articular cartilage is closely coupled to its adjacent subchondral bone and acts as a single functional unit. So many studies have focused on the changes in the process of osteoarthritis of subchondral bone and the necessity of targeting this structure in the treatment of osteoarthritis. Osteoarthritis is a multi factor disease. In clinical, the pathological process of osteoarthritis caused by different causes is not the same. In order to clarify the role of subchondral bone in the development of osteoarthritis, a large number of previous studies have adopted different animal models to observe the occurrence and development of osteoarthritis of osteoarthritis. The changes in the lower bone show that the subchondral bone changes in different types of animal models are not the same and even produce completely opposite changes. Although the changes in the subchondral bone are not the same, it will eventually lead to the occurrence of osteoarthritis. These results suggest that the subchondral bone can have a steady state structure and any damage to the stability of the subchondral bone. Behavior can cause damage to cartilage and eventually lead to osteoarthritis. Mechanical loads are considered as a regulator of bone and cartilage homeostasis in the musculoskeletal system. Previous evidence suggests that bone and cartilage can be strongly dependent on mechanical loads. Running is a very common form of weight bearing movement. The human and animal experiments have explored the effect of running on bone, but the conclusion is not consistent. Exercise intensity is considered an important factor in this disagreement. Our previous animal experiments found that low to medium intensity running could maintain the internal stability of the cartilage, while high intensity exercise could lead to cartilage degradation. However, the effect of running on subchondral bone and the correlation with running intensity is not clear. Therefore, the first aim of this experiment is to explore the effect of different intensity running on the microstructure of subchondral bone in rats. This part will discuss the effects of different intensity running on the articular cartilage of rats in the earlier period, and use M Icro-CT further explored the ultrastructure of the subchondral bone (including subchondral bone plate and subchondral cancellous bone) in the tibial plateau of rats with different intensity of running, and the correlation of the changes of subchondral bone and cartilage under different running intensity. A lot of previous studies have explored the structure and mechanical properties of the subchondral bone under different conditions. Change, and its effect on articular cartilage. The main purpose is to directly observe the microstructure of the bone trabecular 3D images by Micro-CT scanning, and provide and analyze the parameters of the three-dimensional structure to study the subchondral bone. The study of the subchondral bone by.Micro-CT includes the analysis of the bone mass, that is, bone density, and also includes bone density. The qualitative analysis is the spatial and morphological structure of the trabecular bone, such as bone small Liang Jianxi (trabecularseparation, Tb.Sp); bone volume fraction (BV/TV), the ratio of the volume of bone trabecular (bone volume, BV) to the total volume of the sample (total volume, TV); the thickness of the bone trabecula (trabecular thickness, Tb.Th); the porosity of the subchondral bone plate; and bone The degree of trabecular anisotropy (Degree of Anisotropy, DA). Although Micro-CT can reflect the changes in the ultrastructure of the subchondral bone, there is no report on how the subchondral bone composition is changed. The Raman spectroscopy (Raman spectroscopy) is a technique for detecting the molecular components of the material, named by the Raman of India scientist. It is based on the principle of Raman scattering effect to analyze the scattering spectra different from the incident light frequency to obtain information on molecular vibration and rotation to obtain the information of organic and inorganic sample molecules. It is characterized by a qualitative and quantitative analysis of the samples by a minimally invasive and noninvasive method. Effective assessment of samples at molecular level, and the use of minimal damage and noninvasive methods in the detection of some biological samples, such as detection of glucose in urine; detection of HCV in human blood in vitro; carotid and coronary atherosclerosis; bone induction of biomaterials; detection of some bone diseases. Measurement of bone synthesis and integration in the process of bone rehabilitation and the detection of microstructure in bone tissue. A lot of previous studies have mentioned quantitative bone mineralization and bone matrix using Raman spectroscopy to evaluate bone mass. Raman spectroscopy has also been proved by many authors to study the composition of bone tissue as an important test method. The second part of the study will use Raman spectroscopy to explore the changes in the subchondral bone composition of rats after running at different intensities. From the point of view of tissue composition, the correlation between different running intensity and subchondral bone and cartilage changes is studied. Objective 1. to study the microstructure of subchondral bone of rats with different intensity of running table. Influence of.2. on the subchondral bone composition and mechanical properties of rats with different intensity of running. Methods 1, 24 180-220gSD rats were randomly divided into four groups, no exercise group (sedentary control, low intensity exercise group (low-intensity running group, LIR), middle strength exercise group (moderate-intensity runni). Ng group, MIR) and high intensity exercise group (high-intensity running group, HIR). The exercise group (including low intensity exercise group, middle strength exercise group and high intensity exercise group) was treated with 0.3% pentobarbital sodium (0.3% pentobarbital) after 8 weeks of running stage, respectively. After drunken death, the bilateral tibia of each experimental rat was intercepted and the soft tissue was removed. Micro-CT was detected at the proximal end of the right tibia. The proximal tibia specimens were vertically cut into two parts of the lateral and internal sides along the sagittal plane using the hard tissue slicer (EXAKT 3000 CP Band System, Norderstedt, Germany). Each part was followed at the 3 equal points of the coronal plane, respectively. The lateral sagittal section was divided into 3 small parts, and the middle part of the specimen was stored in the refrigerator at -80 C. As shown in Figure 2.1, the lateral and medial part of the articular cartilage of the left tibia of the rat was analyzed by Raman spectrum respectively. Before the test, the specimens were put into the physiological salt water of 4 degrees centigrade before the end of 12h. Raman spectrum. After the specimens performed by Raman spectroscopy, the microhardness was detected by.3, and the detection index was 3.1 Micro-CT: the subchondral bone plate was analyzed, the area of the bearing area was 1.04 x 1.04 square millimeter as the region of interest (region of interest, ROI) (Figure 1.2), and then the CT.vol software was used to analyze and calculate, specific points. The parameters included bone density, porosity, and subchondral bone plate thickness. Analysis of subchondral bone cancellous bone. A small Liang Changfang body size of 1.04 x 1.04 x 0.52mm3 was selected by ROI software (Figure 1.4). The specific parameters included bone trabecular thickness, bone volume, bone trabecular number, bone trabecular interval, connection density, anisotropy. The degree of sex and the structural model index.3.2 Raman spectroscopy: the ratio of the peak 581cm-1 to the peak 1260cm-1 to represent the ratio of the mineral to the matrix; the ratio of the peak 1070cm-1 to the 960cm-1 to represent the ratio of the carbonate to the phosphate; the reciprocal of the full width of the half peak of the 960cm-1 wave peak (full-width half-maximal, FWHM) The mineral crystallinity.3.3 microhardness test was used to represent the bone mineral. Microhardness measurement was measured by the HMV-2 microhardness tester of Shimadzu Corporation. The.HMV-2 microhardness tester was used to measure the subchondral bone plate and the subchondral bone of the subchondral bone of the tibia respectively. Each part of the sample was measured 3 times, and the average value of 3 measurements at each part was taken as the Department. Results 1. the effect of running exercise on the subchondral bone plate of rats at different intensity 1. 1.1 subchondral bone plate results: the subchondral bone plate BMD in the high strength group was 1.181 + 0.084g/cm3 in the lateral part and 1.217 + 0.076g/cm3 in the medial part, which was significantly higher than that in the non motor group (1.089 + 0.052 g/cm3,1.111 + 0.084 g/cm3) (p=0.030, p=0.050). The thickness of the medial subchondral bone plate in the high strength group (0.271 + 0.016mm) was significantly higher than that in the non motor group (0.232 + 0.043mm) (p=0.037). In the lateral part, the thickness of subchondral bone plate in the high intensity group was higher than that in the non motor group, but there was no significant difference. The porosity of subchondral bone plate in the high strength group was 28.47 + 2.43% in the lateral part. The site was 30.48 + 1.61%, which was significantly lower than that in the non motor group (34.69 + 4.39%, 47.22 + 3.63%) (p=0.047, p=0.001). However, there was no significant difference in the thickness and porosity of the subchondral bone plate between the low intensity exercise group and the moderate intensity exercise group, compared with the non exercise group. The Microhardness result of the subchondral bone plate of the.1.2 soft bone showed that the subchondral bone plate of the tibia was in the tibial plate. In the lateral part, the hardness of group HIR was 49.7 + 3.24MPa significantly higher than that in group SED 46.1 + 2.61MPa (p=0.001) and MIR group 47.3 + 4.53MPa (p=0.045), LIR and MIR groups were 47.5 + 2.53MPa and 47.3 + 4.53MPa, although the group increased, but there was no significant change. The same change appeared in the medial part of the subchondral bone plate. The value of 52.27 + 2.64MPa was significantly higher than that in group SED (47.92 + 2.41MPa (p:0.002), and LIR and MIR groups were 48.51 + 2.61MPa and 46.77 + 3.18MPa, respectively, and there was no significant change in the subchondral bone plate of.1.3 in the SED group. The lateral and medial minerals / matrix were significantly lower than the outside and inside of the non motor group (p=). 0.021, p=0.028), indicating that the mineralization of subchondral bone plates decreased. The medial part carbonate / phosphate in the high strength group was significantly higher than that in the non exercise group (p=0.004), and the phosphate / protein was significantly lower than the non exercise group (p=0.032), which indicated that the subchondral bone plate remodeling increased in the high intensity group. The mineral crystallinity of the lateral and medial part of the high strength group was significant. The work was higher than the lateral and medial (p=0.002, p=0.006) of the non exercise group. The Raman spectrum data showed that the high strength group remodeling and the mineral crystallinity, the mineralization degree decreased, the effect of.2. on the subchondral cancellous bone of the rat 2.1, compared with the non exercise group, and the Micr0.CT result of the subchondral cancellous bone of the subchondral bone: high strength compared with the non exercise group. The lateral (p=0.035) and the medial (p=0.002) part of the BMD increased significantly. The BV/TV in the medial part of the high intensity group was significantly higher than that in the non exercise group (p=0.026), indicating that the exercise played a stimulating role in the osteogenesis of the cancellous bone. In addition, the thickness of the lateral and medial part of the cancellous bone in the high strength group was significantly higher than that in the outside (p=0.012) and the medial (p=0.), respectively (p=0.). 027) the separation degree of cancellous bone was lower than that in the non motor group (p=0.047). Through the decrease of SMI and CD in the high intensity group, we found that the cancellous bone in the high intensity group had a plate structure change. On the other hand, the medial part of the BMD was significantly higher than the non exercise group (p= 0.004), and the lateral part of the lateral part was significantly higher than that of the non exercise group (p=0.021). The Tb.N in the medial part of the low intensity group was significantly higher than that in the non exercise group (p=0.032). The low intensity group and the medium strength group had no significant difference with the non exercise group. The Microhardness results of.2.2 subchondral cancellous bone showed that in the lateral part of the subchondral bone of the tibia, the hardness of the H1R group was 48.26 + 4.24MPa, which was significantly higher than that in the group of SED (p= 45.42 + 2.61MPa (p=). O.031), the LIR group and the MIR group were 46.35 + 2.53MPa and 45.14 + 3.21MPa respectively. There was no significant change in the medial part of the subchondral bone of the cancellous bone in the subchondral bone. The Raman results of the subchondral cancellous bone of the subchondral bone were not found in each group. The mineral / matrix of the medial part of the high strength group was significantly lower than that of the non motor group (p=0.033), indicating high strength. The degree of mineralization of the cancellous bone in the degree group was lower than that in the non exercise group.
【學(xué)位授予單位】:南方醫(yī)科大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:R684.3
【參考文獻】
相關(guān)期刊論文 前1條
1 王軍;畢龍;白建萍;呂榮;楊彬奎;;顯微CT與組織切片技術(shù)在骨形態(tài)計量研究中的比較[J];中國矯形外科雜志;2009年05期
,本文編號:1890758
本文鏈接:http://sikaile.net/yixuelunwen/waikelunwen/1890758.html
最近更新
教材專著