周圍神經(jīng)支架材料的制備及其修復神經(jīng)缺損的實驗研究
本文選題:復合支架 + 神經(jīng)��; 參考:《重慶醫(yī)科大學》2015年博士論文
【摘要】:周圍神經(jīng)缺損的修復與功能重建,一直是外科領域致力解決的難題之一。周圍神經(jīng)缺損,會導致肢體嚴重的感覺、運動障礙,致殘率極高,給患者、家庭及社會帶來沉重的經(jīng)濟負和精神上的痛苦,因此,需找到最佳的神經(jīng)修復材料迫在眉睫。自體神經(jīng)移植到目前仍是公認的神經(jīng)缺損修復的金標準,但存在供體神經(jīng)支配區(qū)永新的久性失神經(jīng)功能障礙,且神經(jīng)供體來源有限。多年來,無數(shù)學者致力于此,分別嘗試了多種生物材料(如靜脈、肌肉,去細胞神經(jīng)等)、人工合成材料(如硅膠管、聚羥乙酸等)材料,雖取得不少成就,但仍難以突破現(xiàn)實臨床應用的瓶頸,近年來,同種神經(jīng)異種在神經(jīng)缺損修復過程中取了得了較滿意的效果,但同種供體來源同樣有限,且成本費用極高,臨床應用受限,這促使我們努力尋找到廣闊的修復材料來源,為周圍神經(jīng)缺損提供更為有效的修復手段。該論文設計了人工合成神經(jīng)支架和異種去細胞組織工程神經(jīng)支架修復神經(jīng)缺損,希望能為周圍神經(jīng)缺損的修復提供新的思路。實驗分為以下兩個部分:1、將二氧化硅納米顆粒摻入到膠原蛋白溶液中,構建不同濃度的多孔狀膠原狀蛋白結構,尋找最適合周圍神經(jīng)再生所需的最理想支架。我們對制備支架的各項生物學特性進行了詳細研究,如形態(tài),化學成分,潤濕性,孔隙率,支架膨脹率和降解性。支架內(nèi)進行雪旺細胞的培養(yǎng),用于評價膠原/二氧化硅復合材料對神經(jīng)再生的生物活性的影響,并對支架內(nèi)雪旺細胞DNA含量進行測定。我們成功將二氧化硅納米顆粒摻入膠原構成支架,二氧化硅納米顆粒的摻入可以提高支架疏水性,降低孔隙率、膨脹率和降解速率。此外,雪旺細胞在多孔的支架內(nèi)比單純膠原更容易貼附、增殖。復合支架內(nèi)的細胞數(shù)量和DNA含量隨著納米顆粒濃度的增加而先增加后降低。與其它配比組相比,25微克/毫升的二氧化硅濃度適合細胞的貼附和增殖,其支架內(nèi)DNA含量最高。這些結果表明,摻入二氧化硅納米顆粒的多孔膠原支架有可能用作植入支架材料,促進周圍神經(jīng)的修復與再生。2、用化學去細胞方法萃取異種神經(jīng)支架AXN,體外培養(yǎng)大鼠BMSCs,與AXN構建組織工程化神經(jīng);雌性Vistar大鼠60只,建立右側坐骨神經(jīng)10mm缺損修復模型,隨機分成3組(20只/組),A組:骨髓基質干細胞與異種去細胞神經(jīng)支架復合構建組織工程神經(jīng)橋接坐骨神經(jīng)缺損;B組:單純異種去細胞神經(jīng)支架橋接坐骨神經(jīng)缺損;C組:自體神經(jīng)移植修復坐骨神經(jīng)缺損組。分別于術后4周、12周進行干細胞的轉歸、神經(jīng)移植免疫學檢測、神經(jīng)電生理檢測、再生神經(jīng)組織學觀察、掃描電鏡觀察和患肢小腿三頭肌肌纖維橫徑測量等方法評判坐骨神經(jīng)功能恢復情況。該課題成功獲取了大鼠BMSCs,并用BrdU標記,免疫組織化學染色和流式細胞儀檢測培養(yǎng)的BMSCs表達CD44(+)、CD90(+)和CD34(-),BrdU具有較好的初始標記率,其可達88.36%。去細胞神經(jīng)與新鮮神經(jīng)相比較細胞和髓鞘被徹底清除,保持了原有的三維仿生結構,免疫原成份被清除,流式細胞儀對去細胞神經(jīng)支架組織MHC Ⅱ的檢測結果表明異種神經(jīng)經(jīng)化學去細胞處理后免疫原性明顯減弱,可供神經(jīng)移植使用。3.移植術后4周,流式細胞儀檢測外周血CD3+、CD4+和CD8+T細胞數(shù)量A、B、C組間均無統(tǒng)計學差異,取移植段切片熒光顯微鏡下可見再生纖維束狀排列,其間散在有BrdU標記的細胞核,S-100免疫組化染色檢測BrdU標記細胞S-100蛋白表達陽性;術后12周通過神經(jīng)電生理肌電圖檢測顯示,電刺激可通過移植的神經(jīng)支架到達遠端的效應感受器,記錄該神經(jīng)支配的肌肉所產(chǎn)生的運動誘發(fā)電位,通過移植神經(jīng)段的傳導速度B組動物較A組動物和C組動物略慢,A組和C組無統(tǒng)計學差異。神經(jīng)再生組織學檢查顯示有再生的神經(jīng)纖維通過移植段神經(jīng),移植段內(nèi)有縱行排列分布的SCs。A組、C組組織形態(tài)學、電生理檢測及小腿三頭肌肌纖維橫徑指標均優(yōu)于B組,A組與C組無顯著性差異。
[Abstract]:The repair and function reconstruction of peripheral nerve defect has always been one of the difficult problems to be solved in the field of surgery. The peripheral nerve defect can cause severe feeling, dyskinesia, high disability rate, heavy economic negative and mental pain for the patients, family and society. Therefore, it is urgent to find the best material for nerve repair. Autologous nerve transplantation is still a recognized gold standard for repair of nerve defects, but there is a permanent denervation dysfunction in the donor nerve area of Yongxin, and the source of the nerve donor is limited. Many scholars have tried this for years, and have tried a variety of biomaterials (such as static veins, muscles, cell nerves, etc.), and artificial synthetic materials (such as silicon, such as silicon) Although a lot of achievements have been made in rubber tube and polyoacetic acid, it is still difficult to break through the bottleneck of practical clinical application. In recent years, the same kind of nerve xenograft has taken a satisfactory effect in the process of nerve defect repair, but the source of the same donor is also limited, and the cost and cost are very high and the clinical application is limited. The restorative materials provide more effective repair methods for peripheral nerve defects. This paper designs artificial synthetic nerve scaffolds and xenoacellular tissue engineering nerve scaffolds to repair nerve defects, and hopes to provide new ideas for the repair of peripheral nerve defects. The experiment is divided into two parts: 1, silica nanoparticles The particles were added into the collagen solution to construct a porous protein structure with different concentrations to find the most ideal scaffold for the regeneration of peripheral nerves. We studied the biological properties of the scaffolds in detail, such as morphology, chemical composition, wettability, porosity, stent expansion rate and degradation. The culture of Schwann cells was used to evaluate the effect of collagen / silica composite on the biological activity of nerve regeneration and to determine the DNA content of Schwann cells in the scaffold. We successfully mixed silica nanoparticles into the scaffolds. The incorporation of silica nanoparticles can improve the hydrophobicity of the scaffolds, reduce the porosity, and expand. In addition, Schwann cells are more easily attached and proliferate in porous scaffolds than pure collagen. The number of cells and DNA content in the composite scaffold increase first and then decrease with the increase of the concentration of nanoparticles. Compared with the other matching groups, the concentration of 25 microgram / ml of two silicon oxide is suitable for cell attachment and proliferation, and its scaffold The content of internal DNA is the highest. These results suggest that the porous collagen scaffold doped with silica nanoparticles may be used as a scaffold material to promote the repair and regeneration of peripheral nerve,.2, AXN, BMSCs in vitro, and tissue engineering nerve in vitro, and 60 female Vistar rats. The right sciatic nerve 10mm defect repair model was established and divided randomly into 3 groups (20 rats / groups). Group A: bone marrow stromal cells and xenogeneic nerve scaffolds to construct tissue engineering nerve bridging sciatic nerve defect; group B: simple xenoacellular nerve scaffold bridged sciatic deity defect; group C: autologous nerve graft for the repair of sciatic deity After 4 weeks and 12 weeks, the changes of stem cells, neural transplantation immunology, neurophysiological test, regenerative nerve histology, scanning electron microscopy and transverse diameter measurement of triceps muscle fiber were used to evaluate the recovery of sciatic nerve function. The BMSCs of rats was successfully obtained, and the BrdU standard was used. BMSCs expressed CD44 (+), CD90 (+) and CD34 (-), and BrdU had better initial labeling rate, which could reach 88.36%. to cell nerve and fresh nerve. The cells and myelin sheath were thoroughly removed, and the original three-dimensional biomimetic structure was maintained. The immunogen components were cleared and flow cytometry was used. The results of the detection of MHC II in the cellular nerve scaffold showed that the immunogenicity of the xenogeneic nerve was obviously weakened after the chemical removal of the cell. 4 weeks after the transplantation of.3., the flow cytometry was used to detect the number of CD3+, CD4+ and CD8+T cells in the peripheral blood, A, B, C, and the fluorescence microscope of the transplantation section was seen under the fluorescence microscope. The regenerated fibers were arranged in a fascicular arrangement, scattered in the nucleus with BrdU markers, and S-100 immunohistochemical staining was used to detect the positive expression of S-100 protein in the BrdU labeled cells. Electroelectromyography detected by the electrophysiological electromyography at 12 weeks after the operation showed that the electrical stimulation could reach the distal effector through the transplantation of the nerve scaffold to record the muscle of the innervated muscle. The motor evoked potential of the B group was slightly slower than that of the A group and the C group through the conduction velocity of the transplanted nerve segment. There was no statistical difference between the group A and the C group. The regeneration of the nerve regeneration histology showed that the regenerated nerve fibers passed the segmental nerve, the SCs.A group was arranged in a longitudinal arrangement, the morphology of the C group, the electrophysiological test and the calf. The transverse diameter index of triceps muscle fiber was better than that of group B, and there was no significant difference between group A and group C.
【學位授予單位】:重慶醫(yī)科大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:R318.08;R651
【相似文獻】
相關期刊論文 前10條
1 孫秀艷;孫博;李航旭;胡志元;王輝;張曉毅;;采用Y型神經(jīng)導管修復大鼠骶1神經(jīng)缺損[J];解放軍醫(yī)學院學報;2013年01期
2 崔樹森,,尹維田,王冰,劉永茂,張文杰;靜脈骨骼肌神經(jīng)生長因子復合移植修復神經(jīng)缺損的電生理研究[J];中華顯微外科雜志;1995年03期
3 崔忠寧,劉敏;小隱靜脈蒂動脈化腓腸神經(jīng)移植修復上肢神經(jīng)缺損[J];中華顯微外科雜志;2003年02期
4 郭義柱;盧世璧;王巖;唐佩福;;化學去細胞同種異體神經(jīng)移植治療醫(yī)源性副神經(jīng)缺損4例報告[J];神經(jīng)損傷與功能重建;2010年06期
5 包勤濟;韓西城;;用帶蒂或游離肌橋修復神經(jīng)缺損的實驗研究[J];中華創(chuàng)傷雜志;1993年03期
6 吳兵;郭義柱;王巖;唐佩福;盧世璧;;化學去細胞同種異體神經(jīng)移植修復臂叢神經(jīng)缺損23例[J];軍醫(yī)進修學院學報;2012年11期
7 陳紹宗,李學擁,劉宏偉,吳學軍,陳輝;擴張神經(jīng)法修復前臂神經(jīng)缺損[J];中國臨床解剖學雜志;1991年04期
8 王洪偉,石振國,王楓丹;用骨骼肌橋接神經(jīng)缺損的國內(nèi)研究概況[J];沈陽醫(yī)學院學報;1996年03期
9 辛暢泰,蔡林方,田立杰,魏侃,張炎,安貴林,宋學成,蘇學忠,王素華,蘇秋香,張戰(zhàn),朱啟文,劉曉敏,黃品杰;自體縫匠肌橋接狗股神經(jīng)和正中神經(jīng)缺損的實驗研究[J];沈陽醫(yī)學院學報;1996年04期
10 江起庭;王鈺;楊麗娜;江志偉;;雙端側神經(jīng)吻合修復指固有神經(jīng)缺損[J];外科研究與新技術;2013年04期
相關會議論文 前8條
1 何波;朱慶棠;柴益民;丁小珩;唐舉玉;顧立強;向劍平;楊越雄;朱家愷;劉小林;;人去細胞同種異體神經(jīng)修復指固有神經(jīng)缺損的前瞻性、多中心臨床試驗研究[A];中華醫(yī)學會第10屆全國顯微外科學術會議暨世界首例斷肢再植成功50周年慶典論文集[C];2013年
2 景尚斐;溫樹正;王繼宏;郝增濤;;去細胞異種神經(jīng)復合骨基質干細胞修復神經(jīng)缺損的實驗研究[A];中華醫(yī)學會第10屆全國顯微外科學術會議暨世界首例斷肢再植成功50周年慶典論文集[C];2013年
3 郭義柱;王巖;梁雨田;盧世璧;劉相成;陶笙;唐金樹;孫明學;;化學去細胞神經(jīng)同種異體移植的臨床應用[A];第七屆全國創(chuàng)傷學術會議暨2009海峽兩岸創(chuàng)傷醫(yī)學論壇論文匯編[C];2009年
4 李祥軍;巨積輝;王友兵;;第2趾脛側游離皮瓣修復手指皮膚神經(jīng)缺損[A];中華醫(yī)學會第10屆全國顯微外科學術會議暨世界首例斷肢再植成功50周年慶典論文集[C];2013年
5 郝增濤;溫樹正;;化學去細胞異種神經(jīng)復合NGF修復神經(jīng)缺損的實驗研究[A];中華醫(yī)學會第10屆全國顯微外科學術會議暨世界首例斷肢再植成功50周年慶典論文集[C];2013年
6 劉強;;周圍神經(jīng)同種異體移植修復神經(jīng)缺損的實驗研究和初步臨床應用研究[A];面向21世紀的科技進步與社會經(jīng)濟發(fā)展(下冊)[C];1999年
7 張庭深;蘇秋香;;MDSCs異體移植對坐骨神經(jīng)缺損后再生的影響[A];中國解剖學會2012年年會論文文摘匯編[C];2012年
8 施靜;;針刺抗腦缺血性神經(jīng)元凋亡作用與機制的研究[A];面向21世紀的科技進步與社會經(jīng)濟發(fā)展(下冊)[C];1999年
相關重要報紙文章 前4條
1 記者 吳春燕;中山大學“神橋”造福神經(jīng)缺損患者[N];光明日報;2012年
2 記者 馬凌霜 通訊員 黃愛成;為損傷神經(jīng)搭建“神橋”[N];廣東科技報;2012年
3 本報通訊員 劉曉波邋本報記者 吳紅梅;民生科技,提升百姓幸福指數(shù)[N];新華日報;2008年
4 衣曉峰邋陳英云;利用骨髓干細胞修復神經(jīng)缺損[N];中國醫(yī)藥報;2007年
相關博士學位論文 前7條
1 景尚斐;周圍神經(jīng)支架材料的制備及其修復神經(jīng)缺損的實驗研究[D];重慶醫(yī)科大學;2015年
2 張永光;兩種神經(jīng)缺損局部再生微環(huán)境模式的構建及其修復效果的實驗研究[D];第四軍醫(yī)大學;2012年
3 黃景輝;兩種促神經(jīng)損傷修復電刺激模式的建立及機制研究[D];第四軍醫(yī)大學;2011年
4 高宏陽;組織工程人工神經(jīng)血管化的實驗研究[D];河北醫(yī)科大學;2015年
5 張勇杰;復合脂肪源性間充質干細胞的重組合神經(jīng)移植物的研制和應用[D];第四軍醫(yī)大學;2006年
6 王宇清;PFTBA水凝膠促進周圍神經(jīng)再生的效能及機制研究[D];第四軍醫(yī)大學;2013年
7 黃軍;生物膜包裹、神經(jīng)橋接及神經(jīng)導管小間隙套接法修復貓動眼神經(jīng)的研究[D];中南大學;2003年
相關碩士學位論文 前9條
1 屈巍;高仿真殼聚糖神經(jīng)支架的制備及其橋接神經(jīng)缺損的實驗研究[D];第四軍醫(yī)大學;2010年
2 周振宇;改良尺神經(jīng)部分束支移位治療肌皮神經(jīng)缺損的實驗研究[D];第二軍醫(yī)大學;2007年
3 梁曉旭;自體縫匠肌橋接神經(jīng)缺損處置入bFGF復合降解膜的實驗研究[D];中國醫(yī)科大學;2004年
4 李志勇;骨骼肌干細胞異體移植對坐骨神經(jīng)缺損后再生的影響[D];吉林大學;2008年
5 李祥軍;第二趾脛側游離皮瓣修復手指皮膚及神經(jīng)缺損[D];蘇州大學;2014年
6 冷承浩;NGF和GM_1聯(lián)合應用對大鼠陳舊性坐骨神經(jīng)缺損橋接修復后神經(jīng)再生和修復的實驗研究[D];寧夏醫(yī)科大學;2010年
7 劉合慶;CCK-8構建人工神經(jīng)橋接修復大鼠坐骨神經(jīng)缺損的實驗研究[D];泰山醫(yī)學院;2010年
8 張景石;同種異體去細胞外周神經(jīng)支架與細胞外ATP誘導聯(lián)合移植的實驗研究[D];遵義醫(yī)學院;2011年
9 尤鳳健;骨髓基質干細胞復合膠原-殼聚糖神經(jīng)支架修復大鼠坐骨神經(jīng)缺損的實驗性研究[D];第四軍醫(yī)大學;2011年
本文編號:1840252
本文鏈接:http://sikaile.net/yixuelunwen/waikelunwen/1840252.html