鈦基磷酸鈣復(fù)合涂層的制備及其生物活性評價(jià)
[Abstract]:The chemical composition of biological material and its surface topological structure play a key role in adjusting the biological behavior of protein adsorption, cell adhesion, spreading, migration, proliferation and differentiation. Titanium and titanium alloys have superior physical and chemical properties, which have been widely used in various implants, such as orthopedic, dental, and cardiovascular stents. However, that surface of the titanium base material has a biological inertia, which is weak in the ability of the peripheral bone tissue to form a bone, which delay the time of tissue healing. Therefore, it is of great clinical significance to improve the biological performance of the surface of the titanium implant. The preparation of the hydroxyapatite (HAP) composite coating on the surface of the titanium substrate has become an important means to improve the surface biological activity. FHAP/ ZrO2, Sr FHAP, Sr-Ca-P/ gelatin, MnHAP and HAP/ Ca-SiO3 composite coatings were prepared on the surface of titanium. The phase structure, morphology and composition of the HAP composite coating were studied by means of scanning electron microscope (SEM), X-ray diffractometer (XRD), Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (EDS). The corrosion resistance, mechanical property and cell compatibility of the composite coating were evaluated. The main research contents and conclusions are as follows: a compound coating of a fluorine-doped hydroxyapatite/ oxide-oxide (FHAP/ Zr O2) is prepared on the surface of the titanium by a constant current deposition method. And the crystal grains of the apatite are smaller and the crystallinity is increased, and the coating is a nano-scale needle-like shape. The results show that the FHAP/ ZrO2 composite coating still has good bonding strength even after soaking for 2w in the physiological solution. In vitro dissolution experiments show that the FHAP/ ZrO2 composite coating has lower solubility, that is, better stability, than that of the single-phase HAP coating. The polarization tests show that the FHAP/ ZrO2 composite coating has high corrosion resistance to the HAP. The results of cell adhesion show that the FHAP/ ZrO2 composite coating has good cell compatibility, and the osteoblast is large and closely adhered to it with good morphology. In order to investigate the influence of the doping of fluoride ion and fluoride ion on the properties of the coating, a composite coating of codoped hydroxyapatite (Sr FHAP) was prepared on the surface of titanium by electrodeposition. The composite coating is uniform and dense, and is a nanometer-scale needle-like shape. The fluoride ion and the ionization ions are co-doped into the HAP crystal structure, and fluorine is used as an anti-dissolution element to maintain the long-term stability of the coating, and is used as a dissolution element to promote the bioactivity and the cell compatibility of the coating. The calcium ion dissolution test shows that the SrFHAP composite coating has good physiological stability in 2w. In the simulated body fluid, the SrFHAP composite coating shows stronger corrosion resistance than the pure HAP. In vitro cell detection, the effect of the composite coating on the adhesion and proliferation of the osteoblast is the best, indicating that it has good cell compatibility. In order to investigate the effect of doping on the properties of the coating, a composite coating of calcium-doped calcium phosphate/ gelatin (Sr-Ca-P/ gelatin) was prepared on the surface of titanium by electrodeposition. The Ca-P crystal structure, the gelatin and the Sr-Ca-P are mixed into the Sr-Ca-P/ gelatin composite coating, the whole of the coating is a porous shape, the surface of the coating is rough and uneven, and the adhesion of the porous structure to the osteoblast is very favorable. Sr2 + ions and gelatin are uniformly doped and dispersed in the Ca-P coating. The coating has a thickness of about 10. m u.m, and there is no peeling and/ or cracking at the interface between the coating and the substrate. The tensile test shows that the bonding strength between the Sr-Ca-P/ gelatin composite coating and the substrate is 5.6 MPa and 1.8 MPa, and the bonding strength is weak. The polarization tests show that the Sr-Ca-P/ gelatin composite coating has strong corrosion resistance. The adhesion of the osteoblast to the surface of the composite coating was good, and the MTT assay showed that the proliferation ability of the osteoblast on the surface of the composite coating was good, and the Sr-Ca-P/ gelatin composite coating had better cell compatibility. The composite coating of Mn-doped hydroxyapatite (MnHAP) was prepared by electrodeposition. And the surface of the Ti is soaked by a hot alkali to form a Na2TiO3 thin film, and the bonding strength between the MnHAP composite coating and the titanium substrate can be increased. The composite coating is uniform and dense, which is formed by the aggregation of needle-like crystals with a thickness of about 10. m u.m. The tensile test results show that the bonding strength between the composite coating of the MnHAP and the substrate is about 2 times that of the pure HAP coating, which basically meets the requirements of the international standard. The analysis of the polarization curve shows that the corrosion resistance of the Ti is greatly enhanced by the composite coating of MnHAP. The Mn-HAP coating can rapidly induce the nucleation and growth of the bone-like apatite in the simulated body fluid, indicating that the coating has good biological activity. The cell has a typical osteoblast adhesion phenotype on the surface of the MnHAP composite coating, and the doping of the manganese element makes the proliferation activity of the cell on the surface of the MnHAP composite coating good, and the cell compatibility of the coating is good. HAP/ CaSiO3 composite coatings were prepared on the surface of titanium by electrodeposition in the electrolyte composed of nano-SiO2, Ca (NO3)2 and NH4H2PO4. The surface of the HAP/ CaSiO3 composite coating is composed of an internal dense nano-scale needle-like crystal and an outer micron-sized porous structure, and the porous structure is very favorable for the formation of the new bone. The X-ray diffraction results show that the composite coating mainly includes the HAP phase and the Ca-Si 3 phase. The tensile test results show that the bonding strength between the HAP/ CaSiO3 composite coating and the Ti substrate is 19.1-4.7 MPa, which has basically met the requirements of international standards. The polarization test shows that the HAP/ CaSiO3 composite coating has strong corrosion resistance. The proliferation ability of MC3T3-E1 osteoblast on the surface of HAP/ Ca SiO3 composite coating was significantly higher than on the surface of HAP, indicating that the HAP/ CaSiO3 composite coating had better cell compatibility. In the light of the above, the present study adopts the electrodeposition method to carry out the construction of a plurality of ion-doped calcium phosphate active coatings, and the electrodeposition preparation technology of the calcium phosphate composite coating is theoretically and experimentally studied. The effects of fluoride ion, iron ion, manganese ion, silicon ion and gelatin on the physical properties, chemical properties and biological activity of the composite coatings were studied. The various trace elements (such as fluorine, iron, manganese, silicon, etc.) required for osteogenesis were successfully introduced into the Ca-P coating to provide a preliminary experimental basis for the further study of the clinical application of the calcium phosphate composite coating in the repair of bone defects.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:R318.08
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張靜嫻;洪秋虹;孫學(xué)通;張新平;;醫(yī)用多孔TiO_2/HA/TiO_2復(fù)合涂層的制備和性能[J];材料研究學(xué)報(bào);2012年06期
2 程祥榮,周彬,蔣滔,鄧煒,王貽寧;纖維連接蛋白與鈣磷復(fù)合涂層的初步研究(一)復(fù)合涂層的制備[J];現(xiàn)代口腔醫(yī)學(xué)雜志;2002年04期
3 劉榕芳,肖秀峰,鄭立群,黃俊民;兩步法電沉積制備HA/Ag復(fù)合涂層[J];應(yīng)用化學(xué);2003年06期
4 王周成;黃龍門;唐毅;倪永金;林昌健;;電化學(xué)方法在鈦表面制備Co-YSZ/HAp納米復(fù)合涂層[J];物理化學(xué)學(xué)報(bào);2006年05期
5 孟德強(qiáng);張繼東;曹聰;董宇啟;;等離子噴涂硅灰石/氧化鋯復(fù)合涂層修復(fù)兔骨缺損的實(shí)驗(yàn)研究[J];實(shí)用醫(yī)學(xué)雜志;2007年10期
6 張柏林;王英波;魯雄;周先禮;屈樹新;馮波;翁杰;;脈沖電化學(xué)沉積法制備鈦基HA/Ag復(fù)合涂層[J];稀有金屬材料與工程;2010年10期
7 郭恒;陳吉華;馬楚凡;成煒;;溶膠-凝膠/微弧氧化復(fù)合制備種植體表面HA/TiO_2復(fù)合涂層的研究[J];中國美容醫(yī)學(xué);2007年03期
8 吳雪林;何浩;劉柳;黃浩原;陳科屹;牟雁東;;鈦合金種植體表面生物活性因子緩釋涂層的構(gòu)建及生物學(xué)評價(jià)[J];口腔醫(yī)學(xué);2014年06期
9 蘇冰,于旭東,郭連峰,王成燾;溶膠-凝膠法制備Ca_(10)(PO_4)_6(OH)_2/TiO_2復(fù)合涂層及其在模擬生理體液中的行為[J];無機(jī)化學(xué)學(xué)報(bào);2005年07期
10 李素敏;張芹;趙玉濤;劉曉燕;張釗;;Ti6Al4V表面HAF/YSZ梯度復(fù)合涂層的制備和性能[J];材料研究學(xué)報(bào);2010年05期
相關(guān)會(huì)議論文 前10條
1 許堅(jiān)勇;;復(fù)合涂層的技術(shù)應(yīng)用[A];防腐蝕工程技術(shù)交流會(huì)暨防腐蝕及節(jié)能新材料普及講座論文集[C];2008年
2 趙洪超;徐曦;王旭利;;復(fù)合涂層長期儲存壽命研究[A];中國工程物理研究院第七屆電子技術(shù)青年學(xué)術(shù)交流會(huì)論文集[C];2005年
3 蔣馳;周晉林;賴新春;肖云峰;稅毅;王術(shù)剛;;鉭/鎢/錫復(fù)合涂層噴涂工藝應(yīng)用[A];中國工程物理研究院科技年報(bào)(2002)[C];2002年
4 程銀健;陳九磅;王平;;高溫耐磨復(fù)合涂層的制備與磨損性能研究[A];2011年安徽省科協(xié)年會(huì)——機(jī)械工程分年會(huì)論文集[C];2011年
5 陸企亭;黃茂松;史以洪;;新一代水輪機(jī)抗磨蝕復(fù)合涂層的研制[A];水輪機(jī)抗磨蝕技術(shù)研討會(huì)論文集[C];2006年
6 劉燕;任露泉;于思榮;苑東生;;仿生非光滑納米復(fù)合涂層的潤濕性研究[A];農(nóng)業(yè)機(jī)械化與新農(nóng)村建設(shè)——中國農(nóng)業(yè)機(jī)械學(xué)會(huì)2006年學(xué)術(shù)年會(huì)論文集(上冊)[C];2006年
7 王福恒;;復(fù)合涂層重防護(hù)技術(shù)研究[A];電子產(chǎn)品防護(hù)技術(shù)研討會(huì)論文集[C];1996年
8 謝志雄;董仕節(jié);;點(diǎn)焊電極表面電火花沉積復(fù)合涂層的組織和性能[A];湖北省第十屆熱處理年會(huì)論文集[C];2006年
9 雷廷權(quán);歐陽家虎;耿林;裴宇滔;郭立新;李強(qiáng);;激光熔覆復(fù)合涂層組織的形成與控制[A];第六屆全國表面工程學(xué)術(shù)會(huì)議暨首屆青年表面工程學(xué)術(shù)論壇論文集[C];2006年
10 陳永雄;魏世丞;劉燕;白金元;梁秀兵;徐濱士;;電弧噴涂抗熱腐蝕/海水腐蝕雙層復(fù)合涂層的制備及其組織分析[A];第七屆全國表面工程學(xué)術(shù)會(huì)議暨第二屆表面工程青年學(xué)術(shù)論壇論文集(二)[C];2008年
相關(guān)重要報(bào)紙文章 前2條
1 記者 姚耀;納米復(fù)合涂層新技術(shù)為飛機(jī)護(hù)航[N];中國化工報(bào);2010年
2 劉小革;我國核聚變裝置壁處理再創(chuàng)新技術(shù)[N];四川科技報(bào);2000年
相關(guān)博士學(xué)位論文 前10條
1 劉延輝;Ti6A14V鈦合金表面激光熔覆鎳基復(fù)合涂層及增強(qiáng)機(jī)理研究[D];華東理工大學(xué);2015年
2 張偉鋼;復(fù)合涂層結(jié)構(gòu)與紅外波段特性、兼容性及光譜選擇性研究[D];南京航空航天大學(xué);2014年
3 嚴(yán)雅靜;金屬鈦表面TiO_2納米管磷灰石復(fù)合涂層的制備與生物活性研究[D];電子科技大學(xué);2015年
4 黃勇;鈦基磷酸鈣復(fù)合涂層的制備及其生物活性評價(jià)[D];電子科技大學(xué);2014年
5 王永東;氬弧熔敷原位自生顆粒增強(qiáng)鎳基復(fù)合涂層研究[D];哈爾濱工程大學(xué);2009年
6 徐德生;仿生非光滑耐磨復(fù)合涂層的研究[D];吉林大學(xué);2004年
7 周加貝;可載藥生物高分子/磷酸鈣多孔復(fù)合涂層的制備、表征及生物學(xué)評價(jià)[D];浙江大學(xué);2012年
8 顧盛挺;激光熔覆顆粒增強(qiáng)復(fù)合涂層的力學(xué)性能及損傷破壞機(jī)理研究[D];浙江工業(yè)大學(xué);2012年
9 王英波;鈦基羥基磷灰石復(fù)合涂層的研究[D];西南交通大學(xué);2010年
10 王勇;鈦合金表面激光合成與熔覆稀土生物陶瓷復(fù)合涂層的研究[D];重慶大學(xué);2002年
相關(guān)碩士學(xué)位論文 前10條
1 李英;微納多級結(jié)構(gòu)鉭復(fù)合涂層的制備及生物性能研究[D];華南理工大學(xué);2015年
2 歐陽卓;GH4169合金等離子噴涂(MoSi_2-CoNiCrAlY)復(fù)合涂層及其高溫氧化性能研究[D];華南理工大學(xué);2015年
3 秦麗紅;鈣磷/殼聚糖復(fù)合涂層表面BSA的吸附動(dòng)力學(xué)研究[D];福建醫(yī)科大學(xué);2015年
4 李闖;激光表面合金化TiAl_3增強(qiáng)鋁基復(fù)合涂層研究[D];昆明理工大學(xué);2015年
5 黃鵬;新型厚鎢復(fù)合涂層的制備工藝與性能研究[D];西南交通大學(xué);2015年
6 王攀;TC4合金表面TiO_2/HA復(fù)合涂層的制備工藝與性能研究[D];長安大學(xué);2015年
7 張丙明;碳化纖維抗靜電復(fù)合涂層的制備及性能研究[D];山東大學(xué);2015年
8 耿振;氮弧熔覆TiN-TiB_2/Fe基復(fù)合涂層組織與耐磨性研究[D];河北農(nóng)業(yè)大學(xué);2015年
9 王祥;等離子噴涂鎳基復(fù)合涂層的微觀結(jié)構(gòu)及摩擦學(xué)行為研究[D];重慶理工大學(xué);2015年
10 張毅;鎂合金表面梯度降解生物涂層制備及性能表征[D];重慶理工大學(xué);2015年
,本文編號:2473339
本文鏈接:http://sikaile.net/yixuelunwen/swyx/2473339.html