功能化石墨烯為模板仿生礦物材料的可控構(gòu)筑及載藥研究
[Abstract]:Natural mineral materials (bones, teeth, pearls, shells, etc.) have excellent mechanical strength and toughness, which is made of synthetic materials and natural geological mineral materials, and therefore, The formation mechanism of biological mineral material and the research of the related structure bionic materials have always been one of the hot topics in the field of material science. In recent years, many encouraging results have been achieved through the use of functional organic templates to induce the growth of biological mineral crystals. Graphene and its functional products have been widely used in many fields as a kind of emerging materials, but they are relatively few in the field of biomineralization as template polymers. As a template, different functional groups modified graphene still have some problems waiting for us to study in the process of mineralization and growth of biological minerals. The functionalized graphene is used as a template, and graphene-based biomineralized composite materials with different microstructures are controlled. Subsequently, we studied the biocompatibility of two graphene-based biomineralized composite microspheres as bone drug carrier and the loading and release properties of anti-cancer drug DOX, so as to further expand the potential application of biomineralized materials in medical field. The specific contents and conclusions are as follows: using graphene oxide (GOs) as a template, a static drop-by-drop addition of CaCl2 and Na2CO3 solution is used to induce the slow crystallization and growth of CaCO3 crystals at room temperature. The kinetics of mineralization growth was further studied. The results showed that the growth time of crystallization was extended to 24h, and that of GOs/ CaCO 3 was still stable, and by carrying out the experiment of reverse dropping of Ca ~ (2 +) and CO32-ions, The effect of GOs on the crystallization of CaCO3 was studied by changing the initial pH value of GOs/ CaCl2 solution and the reduction of graphene as template, indicating that the influence of GOD on the crystallization of CaCO3 was closely related to the interaction between the co-surface-OH and Ca2 + ions. The chlorosulfonated graphene (GO-COOH) is very close to the polyaspartic acid-chitin organic template in the biological shell body, and is an ideal biological bionic material template. The GO-COOH/ CaCO3 composite multi-layer structure was successfully obtained by depositing CaCO3 on the surface of GO-COOH layer by adding CaCl2 and Na2CO3 solution to the surface of GO-COOH. The kinetics of mineralization growth showed that the multi-layer structure began to appear when the crystallization reaction was 4h. The results show that high concentration of CaCO3 hinders the formation of multi-layer structures of GO-COOH/ CaCO3 composites, and the selection of suitable CaCO3 concentration is the key to the formation of multi-layer structures. Through the formation of GO-COOH/ BaSO4 composite multi-layer structures, the universality of the research methods is further proved. This study provides a new approach to construct a shell-like multi-layer structure. By using tetraethylene pentylamine modified graphene (rGO-TEPA) as a template to induce the mineralization and crystallization of CaCO3, the rGO-TEPA/ CaCO3 microspheres with rough surfaces and hollow structures are successfully obtained, and the rGO-TEPA/ CaCO3 composite hollow microspheres are further utilized as the drug carriers of the anti-cancer drug DOX, the biocompatibility of the drug carrier and the loading and release properties of the drug are studied; in order to verify the importance of the hollow structure, the same size is prepared by varying the concentration, temperature, time, etc. of the reactants, The rGO-TEPA/ CaCO3 composite solid crystals with different morphological structures were subjected to the same loading drugs as well as in vitro simulated drug release studies. The results show that rGO-TEPA/ CaCO3 composite hollow carrier microspheres have excellent DOX load and can release drug responsiveness at lower pH conditions. The rGO-TEPA/ CaCO3: HA composite microspheres were obtained by using rGO-TEPA/ CaCO3 composite solid microspheres as an intermediate, and the rGO-TEPA/ CaCO3: HA composite microspheres of the HA-coated rGO-TEPA/ CaCO3 microspheres were obtained. The N2 adsorption-desorption test results show that both microspheres have the type IV-type isotherm of typical porous material and H1 lag ring. further utilizes the two microspheres as the drug carrier of the anticancer drug DOX, studies the biocompatibility of the drug carrier and the loading and release performance of the drug, The results showed that both drug carriers had better biocompatibility and were able to effectively load DOX and pH response release properties. To sum up, we utilize functionalized graphene of different functional groups, namely graphene oxide having-OH, chlorosulfonated graphene having-COOH, graphene-modified graphene having-NH2, and graphene without a functional group as a template, and inducing crystal growth of CaCO3 crystal to obtain functionalized graphene/ calcium carbonate composite biological mineral material with different crystal structure and micro-morphology. Subsequently, we studied two kinds of graphene-based biomineralized composite microspheres as the carrier of bone drugs, and the loading and release properties of anti-cancer drug DOX. It is hoped that the research of this paper can provide references for the application of graphene-based biomineralization materials in bionic materials, biomedical materials and other fields.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:R318.08;O613.71
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;石墨烯相變研究取得新進(jìn)展[J];潤滑與密封;2009年05期
2 ;科學(xué)家首次用納米管制造出石墨烯帶[J];電子元件與材料;2009年06期
3 ;石墨烯研究取得系列進(jìn)展[J];高科技與產(chǎn)業(yè)化;2009年06期
4 ;新材料石墨烯[J];材料工程;2009年08期
5 ;日本開發(fā)出在藍(lán)寶石底板上制備石墨烯的技術(shù)[J];硅酸鹽通報;2009年04期
6 馬圣乾;裴立振;康英杰;;石墨烯研究進(jìn)展[J];現(xiàn)代物理知識;2009年04期
7 傅強(qiáng);包信和;;石墨烯的化學(xué)研究進(jìn)展[J];科學(xué)通報;2009年18期
8 ;納米中心石墨烯相變研究取得新進(jìn)展[J];電子元件與材料;2009年10期
9 徐秀娟;秦金貴;李振;;石墨烯研究進(jìn)展[J];化學(xué)進(jìn)展;2009年12期
10 張偉娜;何偉;張新荔;;石墨烯的制備方法及其應(yīng)用特性[J];化工新型材料;2010年S1期
相關(guān)會議論文 前10條
1 成會明;;石墨烯的制備與應(yīng)用探索[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年
2 錢文;郝瑞;侯仰龍;;液相剝離制備高質(zhì)量石墨烯及其功能化[A];中國化學(xué)會第27屆學(xué)術(shù)年會第04分會場摘要集[C];2010年
3 張甲;胡平安;王振龍;李樂;;石墨烯制備技術(shù)與應(yīng)用研究的最新進(jìn)展[A];第七屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集(第3分冊)[C];2010年
4 趙東林;白利忠;謝衛(wèi)剛;沈曾民;;石墨烯的制備及其微波吸收性能研究[A];第七屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集(第7分冊)[C];2010年
5 沈志剛;李金芝;易敏;;射流空化方法制備石墨烯研究[A];顆粒學(xué)最新進(jìn)展研討會——暨第十屆全國顆粒制備與處理研討會論文集[C];2011年
6 王冕;錢林茂;;石墨烯的微觀摩擦行為研究[A];2011年全國青年摩擦學(xué)與表面工程學(xué)術(shù)會議論文集[C];2011年
7 趙福剛;李維實(shí);;樹枝狀結(jié)構(gòu)功能化石墨烯[A];2011年全國高分子學(xué)術(shù)論文報告會論文摘要集[C];2011年
8 吳孝松;;碳化硅表面的外延石墨烯[A];2011中國材料研討會論文摘要集[C];2011年
9 周震;;后石墨烯和無機(jī)石墨烯材料:計(jì)算與實(shí)驗(yàn)的結(jié)合[A];中國化學(xué)會第28屆學(xué)術(shù)年會第4分會場摘要集[C];2012年
10 周琳;周璐珊;李波;吳迪;彭海琳;劉忠范;;石墨烯光化學(xué)修飾及尺寸效應(yīng)研究[A];2011中國材料研討會論文摘要集[C];2011年
相關(guān)重要報紙文章 前10條
1 姚耀;石墨烯研究取得系列進(jìn)展[N];中國化工報;2009年
2 劉霞;韓用石墨烯制造出柔性透明觸摸屏[N];科技日報;2010年
3 記者 王艷紅;“解密”石墨烯到底有多奇妙[N];新華每日電訊;2010年
4 本報記者 李好宇 張們捷(實(shí)習(xí)) 特約記者 李季;石墨烯未來應(yīng)用的十大猜想[N];電腦報;2010年
5 證券時報記者 向南;石墨烯貴過黃金15倍 生產(chǎn)不易炒作先行[N];證券時報;2010年
6 本報特約撰稿 吳康迪;石墨烯 何以結(jié)緣諾貝爾獎[N];計(jì)算機(jī)世界;2010年
7 記者 謝榮 通訊員 夏永祥 陳海泉 張光杰;石墨烯在泰實(shí)現(xiàn)產(chǎn)業(yè)化[N];泰州日報;2010年
8 本報記者 紀(jì)愛玲;石墨烯:市場未啟 炒作先行[N];中國高新技術(shù)產(chǎn)業(yè)導(dǎo)報;2011年
9 周科競;再說石墨烯的是與非[N];北京商報;2011年
10 王小龍;新型石墨烯材料薄如紙硬如鋼[N];科技日報;2011年
相關(guān)博士學(xué)位論文 前10條
1 李潔;功能化石墨烯為模板仿生礦物材料的可控構(gòu)筑及載藥研究[D];哈爾濱工程大學(xué);2016年
2 呂敏;雙層石墨烯的電和磁響應(yīng)[D];中國科學(xué)技術(shù)大學(xué);2011年
3 羅大超;化學(xué)修飾石墨烯的分離與評價[D];北京化工大學(xué);2011年
4 唐秀之;氧化石墨烯表面功能化修飾[D];北京化工大學(xué);2012年
5 王崇;石墨烯中缺陷修復(fù)機(jī)理的理論研究[D];吉林大學(xué);2013年
6 盛凱旋;石墨烯組裝體的制備及其電化學(xué)應(yīng)用研究[D];清華大學(xué);2013年
7 姜麗麗;石墨烯及其復(fù)合薄膜在電極材料中的研究[D];西南交通大學(xué);2015年
8 姚成立;多級結(jié)構(gòu)石墨烯/無機(jī)非金屬復(fù)合材料的仿生合成及機(jī)理研究[D];安徽大學(xué);2015年
9 伊丁;石墨烯吸附與自旋極化的第一性原理研究[D];山東大學(xué);2015年
10 梁巍;基于石墨烯的氧還原電催化劑的理論計(jì)算研究[D];武漢大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 詹曉偉;碳化硅外延石墨烯以及分子動力學(xué)模擬研究[D];西安電子科技大學(xué);2011年
2 王晨;石墨烯的微觀結(jié)構(gòu)及其對電化學(xué)性能的影響[D];北京化工大學(xué);2011年
3 苗偉;石墨烯制備及其缺陷研究[D];西北大學(xué);2011年
4 蔡宇凱;一種新型結(jié)構(gòu)的石墨烯納米器件的研究[D];南京郵電大學(xué);2012年
5 金麗玲;功能化石墨烯的酶學(xué)效應(yīng)研究[D];蘇州大學(xué);2012年
6 黃凌燕;石墨烯拉伸性能與尺度效應(yīng)的研究[D];華南理工大學(xué);2012年
7 劉汝盟;石墨烯熱振動分析[D];南京航空航天大學(xué);2012年
8 雷軍;碳化硅上石墨烯的制備與表征[D];西安電子科技大學(xué);2012年
9 于金海;石墨烯的非共價功能化修飾及載藥系統(tǒng)研究[D];青島科技大學(xué);2012年
10 李晶;高分散性石墨烯的制備[D];上海交通大學(xué);2013年
,本文編號:2307424
本文鏈接:http://sikaile.net/yixuelunwen/swyx/2307424.html