天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

個(gè)性化醫(yī)療信息推薦系統(tǒng)的研究與實(shí)現(xiàn)

發(fā)布時(shí)間:2018-10-10 17:18
【摘要】:隨著互聯(lián)網(wǎng)時(shí)代的到來,網(wǎng)絡(luò)上的信息呈現(xiàn)出指數(shù)增長(zhǎng)的趨勢(shì)。醫(yī)療信息資源作為海量網(wǎng)絡(luò)信息中的一部分也呈現(xiàn)出了“爆炸式”的增長(zhǎng)趨勢(shì)。用戶在海量網(wǎng)絡(luò)信息中很難快速地找到自己所需要的有用信息,這就是在所謂的“信息爆炸”和“信息過載”的互聯(lián)網(wǎng)時(shí)代所體現(xiàn)出來的弊端。微軟亞洲研究院負(fù)責(zé)搜索的一名技術(shù)專家說:75%的內(nèi)容通用搜索引擎搜索不出來,僅僅能夠獲取互聯(lián)網(wǎng)中的一小部分信息。與此同時(shí),通用搜索引擎往往返回給用戶幾十頁甚至上百頁的信息,但用戶通常不會(huì)一頁頁的去查看是否是自己所需的信息,于是就導(dǎo)致了用戶真正所需的信息可能出現(xiàn)在幾十頁甚至上百頁之后而并沒有被挖掘推薦出來。這就說明,通用搜索引擎雖然能夠很輕松地幫助我們找到海量的信息,但是我們卻很難從中找到自己真正想得到的信息。為了改善通用搜索引擎的弊端,本文研究并設(shè)計(jì)了一套面向醫(yī)療領(lǐng)域個(gè)性化的醫(yī)療信息推薦系統(tǒng),該系統(tǒng)能夠?qū)⒂脩羲栊畔⒓捌湎嚓P(guān)的信息推薦給用戶,能夠很好的滿足用戶的需求。 本文以數(shù)據(jù)挖掘和信息推薦算法為基礎(chǔ),研究設(shè)計(jì)并實(shí)現(xiàn)了一套專門用于醫(yī)療信息領(lǐng)域的個(gè)性化信息推薦系統(tǒng)。首先,本文詳細(xì)討論了個(gè)性化醫(yī)療信息推薦相關(guān)的關(guān)鍵技術(shù),主要包括用戶興趣模型的構(gòu)建和信息推薦基本算法,重點(diǎn)分析了幾種信息推薦算法的優(yōu)缺點(diǎn),并最終設(shè)計(jì)了一種符合本系統(tǒng)設(shè)計(jì)所需的推薦算法。其次,詳細(xì)闡述了醫(yī)療信息領(lǐng)域中個(gè)性化信息推薦系統(tǒng)的設(shè)計(jì),從系統(tǒng)需求出發(fā),構(gòu)建系統(tǒng)的整體框架,設(shè)計(jì)了用戶興趣模型、中文分詞模塊、信息預(yù)處理模塊、信息推薦模塊以及個(gè)性化頁面定制模塊等。最后,實(shí)現(xiàn)了醫(yī)療領(lǐng)域中的個(gè)性化信息推薦系統(tǒng),并對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行了分析。實(shí)驗(yàn)結(jié)果表明,在實(shí)驗(yàn)室環(huán)境條件下,本系統(tǒng)能夠很好的將用戶所需的醫(yī)療信息推薦出來,并且還能夠推薦給用戶一些相關(guān)的醫(yī)療信息。
[Abstract]:With the advent of the Internet era, the information on the network shows an exponential growth trend. As a part of massive network information, medical information resources also show an explosive growth trend. It is very difficult for users to find the useful information they need quickly in the mass network information, which is the drawback of the so-called "information explosion" and "information overload" in the Internet era. A search technology expert at Microsoft Research Asia said: 75 percent of all content search engines fail to search and can access only a fraction of the information on the Internet. At the same time, generic search engines often return dozens or even hundreds of pages of information to users, but users usually don't page by page to see if it's what they need. As a result, the information the user really needs may appear after dozens or even hundreds of pages without being mined and recommended. This shows that although the general search engine can easily help us find a huge amount of information, it is difficult for us to find the information we really want from it. In order to improve the disadvantages of general search engine, this paper studies and designs a personalized medical information recommendation system for medical field. The system can recommend the information needed by users and related information to users. Be able to meet the needs of users. Based on data mining and information recommendation algorithm, a personalized information recommendation system is designed and implemented in this paper. Firstly, this paper discusses the key technologies related to personalized medical information recommendation in detail, including the construction of user interest model and the basic algorithm of information recommendation, and analyzes the advantages and disadvantages of several information recommendation algorithms. Finally, a recommendation algorithm is designed to meet the need of the system design. Secondly, the design of personalized information recommendation system in the field of medical information is described in detail. Based on the system requirements, the overall framework of the system is constructed, and the user interest model, Chinese word segmentation module, information preprocessing module are designed. Information recommendation module and personalized page customization module. Finally, the personalized information recommendation system in the medical field is implemented, and the experimental results are analyzed. The experimental results show that under the condition of laboratory environment, the system can recommend the medical information needed by the user, and can also recommend some related medical information to the user.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:R319

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉瑩;蔡萬景;;Portal個(gè)性化定制的研究[J];電腦知識(shí)與技術(shù);2009年21期

2 劉建國;周濤;郭強(qiáng);汪秉宏;;個(gè)性化推薦系統(tǒng)評(píng)價(jià)方法綜述[J];復(fù)雜系統(tǒng)與復(fù)雜性科學(xué);2009年03期

3 宋真真;王浩;楊靜;;協(xié)同過濾技術(shù)在個(gè)性化推薦中的運(yùn)用[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年07期

4 趙亮,胡乃靜,張守志;個(gè)性化推薦算法設(shè)計(jì)[J];計(jì)算機(jī)研究與發(fā)展;2002年08期

5 陳華;李仁發(fā);劉鈺峰;練琪;;個(gè)性化搜索引擎推薦算法研究[J];計(jì)算機(jī)應(yīng)用研究;2010年01期

6 張啟宇;朱玲;張雅萍;;中文分詞算法研究綜述[J];情報(bào)探索;2008年11期

7 曾春,邢春曉,周立柱;個(gè)性化服務(wù)技術(shù)綜述[J];軟件學(xué)報(bào);2002年10期

8 陳媛;茍光磊;;個(gè)性化服務(wù)用戶模型研究[J];計(jì)算機(jī)工程與設(shè)計(jì);2008年09期

9 張嵬;莫梅琦;夏知平;徐一新;;醫(yī)學(xué)信息資源個(gè)性化服務(wù)推薦系統(tǒng)設(shè)計(jì)與實(shí)施[J];圖書館雜志;2006年06期

10 蔣萍,崔志明;智能搜索引擎中用戶興趣模型分析與研究[J];微電子學(xué)與計(jì)算機(jī);2004年11期

相關(guān)碩士學(xué)位論文 前4條

1 馮子威;用戶興趣建模的研究[D];哈爾濱工業(yè)大學(xué);2010年

2 謝華;Internet網(wǎng)頁自動(dòng)分類技術(shù)的研究[D];中南大學(xué);2007年

3 方惠敏;基于BP神經(jīng)網(wǎng)絡(luò)的個(gè)性化網(wǎng)站界面用戶建模[D];河南大學(xué);2008年

4 高建煌;個(gè)性化推薦系統(tǒng)技術(shù)與應(yīng)用[D];中國科學(xué)技術(shù)大學(xué);2010年



本文編號(hào):2262625

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/swyx/2262625.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b9ceb***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com