納米二氧化鈦薄膜材料生物相容性的分析研究
發(fā)布時間:2018-06-27 16:54
本文選題:TiO_2納米薄膜 + 成骨細胞 ; 參考:《華中師范大學(xué)》2012年碩士論文
【摘要】:硬骨組織修復(fù)材料是生物醫(yī)用材料的一種,主要應(yīng)用于診斷、治療、修復(fù)和替換病損骨組織,增進老損骨組織的功能,是一類需求量大,市場前景廣泛的材料。目前臨床使用的硬骨組織修復(fù)材料組要為金屬、生物陶瓷、生物玻璃和高分子聚合物支架,其壽命通常為10-15年。這樣短的壽命為患者帶來不便,也易引起二次痛苦。 骨植入體在植入生物體后需要發(fā)生與周圍組織的整合,其過程通常需要成骨細胞的大量粘附。成骨細胞早期大量粘附于植入體,細胞間迅速進行通信,完成細胞增殖、分化和其它生理功能,從而與生物體整合,發(fā)揮正常的生理功能。影響成骨細胞在材料表面早期粘附行為的因素包括材料表面的化學(xué)構(gòu)成、拓?fù)湫蚊、粗糙度及親水性等。研究表明,現(xiàn)有硬骨替代材料通常因為成纖維細胞包裹而導(dǎo)致發(fā)炎、壞死,使之無法發(fā)揮正常功能。而成纖維細胞和成骨細胞在材料表面的粘附比例顯示與材料表面粗糙度有關(guān),即材料表面粗糙度大時,成骨細胞易粘附,反之則造成成纖維細胞的大量附著。通過對生物材料表面改性,尤其是對表面粗糙度的改變可以提高成骨細胞在材料表面的粘附,提高植入體的成活率。 對天然骨組織的研究發(fā)現(xiàn),天然骨表面覆蓋一層直徑為1nm的膠原顆粒,這使得納米材料作為骨植入材料的研究得到了強有力的理論支持。鈦金屬以及其合金材料是生物材料學(xué)的研究熱點,納米尺度鈦材料顯示出相對于其他金屬材料的低毒性,受到全世界科學(xué)家的矚目。目前對納米二氧化鈦材料的研究普遍集中于顆粒物質(zhì)的體內(nèi)、體外毒性研究,以及合金材料作為骨植入體的相關(guān)研究,對于表面覆蓋納米二氧化鈦薄膜的鈦基底材料的相關(guān)研究還較為少見。 本實驗分為兩個部分,在第一部分中討論了表面形貌分別為管狀、網(wǎng)狀、顆粒狀的三種納米二氧化鈦薄膜材料在體外實驗中的毒性測試,使用的實驗手段包括掃描電子顯微鏡下觀察材料表面粘附細胞的形態(tài)和數(shù)量,粘附細胞的乳酸脫氫酶泄露和細胞增殖。實驗發(fā)現(xiàn)三種形貌的納米二氧化鈦薄膜材料中,顆粒狀納米二氧化鈦覆蓋的薄膜材料相對其他兩種材料具有更高的細胞親和力和較低的乳酸脫氫酶泄露,是相對理想的材料。 第二部分實驗承接第一部分實驗的結(jié)果,著重討論了表面覆蓋1層、2層、3層、4層納米二氧化鈦顆粒的薄膜材料的生物相容性。實驗采用國際流行的Layer-by-Layer自組裝技術(shù)在純鈦基底表面組裝不同層數(shù)的納米二氧化鈦顆粒,并使用掃面電子顯微鏡對材料進行表征,通過接觸角分析實驗對材料的親水性進行檢測。生物實驗部分,采用鼠成骨瘤細胞與四種材料共培養(yǎng),分別研究了材料表面粘附細胞的形貌和數(shù)量,使用熒光染料對粘附細胞內(nèi)的ROS和DNA進行染色觀察,測量了細胞乳酸脫氫酶泄露量和細胞增殖情況。結(jié)果發(fā)現(xiàn)材料表面粗糙度隨著薄膜層數(shù)的增加而增大,親水性也隨之增大。而薄膜層數(shù)多的材料在生物學(xué)研究指標(biāo)上也表現(xiàn)出優(yōu)勢,即薄膜層數(shù)越多,粗糙度越大的材料,其表面粘附細胞數(shù)量越多,細胞生長狀況約好,受氧化損傷程度低,細胞凋亡和壞死現(xiàn)象少。
[Abstract]:Bone tissue repair material is a kind of biomedical material. It is mainly used to diagnose, treat, repair and replace the damaged bone tissue and improve the function of old bone tissue. It is a kind of material with large demand and wide market prospects. The clinical use of bone tissue repair materials in clinical use is for metal, bioceramics, Bioglass and polymer. Composite scaffolds usually have a life span of 10-15 years. Such short life can cause inconvenience to patients and cause two times of pain.
Bone implants need to integrate with the surrounding tissue after the implant is implanted. The process usually requires a large amount of adherence to the osteoblasts. Osteoblasts adhere to the implants in a large number of early stages, communicate rapidly between cells, complete cell proliferation, differentiation and other physiological functions, thus integrate with the organism and exert normal physiological functions. The factors of the early adhesion of bone cells on the surface of the material include the chemical composition of the surface of the material, the topologies, the roughness and the hydrophilicity, etc. research shows that the existing bone substitute materials are usually inflamed and necrotic, resulting from the inclusion of fibroblasts, which make it impossible to perform normal work. The adhesion ratio shows that the surface roughness of the material is related to the surface roughness of the material, that is, the osteoblast is easy to adhere to when the surface roughness is large, and on the contrary, it causes a large number of attachment of fibroblasts. By modifying the surface of the biomaterial, especially the surface roughness, the adhesion of osteoblast to the surface of the material can be improved and the survival rate of the implant is increased.
The study of natural bone tissue found that the surface of the natural bone covered a layer of collagen particles with a diameter of 1nm, which made the research of nanomaterial as a bone implant material. Titanium and its alloy materials are the hot spots in the study of biomaterials, and the nano scale titanium materials show relative to other metal materials. Low toxicity has attracted the attention of scientists all over the world. At present, the research of nanoscale titanium dioxide is generally concentrated in the body of particulate matter, in vitro toxicity research, as well as the related research of alloy materials as bone implants. The related research on the surface of titanium base materials covering nano titanium dioxide film is relatively rare.
The experiment is divided into two parts. In the first part, the toxicity test of three nano TiO 2 thin film materials with surface morphology, tubular, reticular and granular, is discussed in vitro. The use of the experimental means includes scanning electron microscope to observe the morphology and quantity of adhesion cells on the surface of the material, and the dehydrogenation of the adhesion cells. Enzyme leakage and cell proliferation. In the three morphologies of nanoscale titanium dioxide thin film materials, granular nanoscale titanium dioxide film materials have higher cell affinity and lower lactate dehydrogenase leakage relative to the other two materials, which are relatively ideal materials.
The second part of the experiment carried on the results of the first part of the experiment, and focused on the biocompatibility of the film materials covering 1 layers, 2 layers, 3 layers and 4 layers of nanoscale titanium dioxide particles. The experiment used the international popular Layer-by-Layer self-assembly technology to assemble different layers of nano titanium dioxide particles on the surface of pure titanium base and use sweep surface electricity. The material was characterized by a SUBMICROSCOPE and the hydrophilicity of the material was detected by the contact angle analysis experiment. In the biological experiment part, the rat osteoma cells were co cultured with four kinds of materials. The morphology and quantity of the adhesion cells on the surface of the material were studied, and the ROS and DNA were observed by the fluorescent dye. The results show that the surface roughness of the material increases with the increase of the number of film layers, and the hydrophilicity increases with the increase of the number of thin film layers. The more the film layers, the more the layers and the greater the roughness of the materials, the more the surface adhesion cells are. The growth of cells is good, the degree of oxidative damage is low, and the phenomenon of apoptosis and necrosis is small.
【學(xué)位授予單位】:華中師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:R318.08
【參考文獻】
相關(guān)期刊論文 前2條
1 孔麗君;敖強;奚靜;張玲;公衍道;趙南明;張秀芳;;MC 3T3-E1細胞在納米羥基磷灰石/殼聚糖復(fù)合支架上的增殖和分化[J];生物工程學(xué)報;2007年02期
2 張吉宏;趙常利;張小農(nóng);;鈦合金表面納米結(jié)構(gòu)對鈣磷礦化物體外沉積及成骨細胞礦化功能的影響[J];中國組織工程研究與臨床康復(fù);2010年12期
,本文編號:2074586
本文鏈接:http://sikaile.net/yixuelunwen/swyx/2074586.html
最近更新
教材專著