原位凝固成型法制備可控孔隙結(jié)構(gòu)β-磷酸三鈣組織工程支架的研究
本文選題:β-磷酸三鈣 + 骨組織工程支架。 參考:《華南理工大學(xué)》2012年碩士論文
【摘要】:理想的組織工程支架要求具有三維連通的孔隙結(jié)構(gòu)和一定的力學(xué)強度。傳統(tǒng)的造孔方法對孔徑大小和連通程度的可控性差,近年來新興的快速原型制造技術(shù)精度高,,能夠很好地成型復(fù)雜形狀零件,具備控制骨組織工程支架結(jié)構(gòu)的能力,但是目前快速原型技術(shù)只能對部分生物惰性的高分子材料進行成型。本研究采用快速原型技術(shù),結(jié)合凝膠注模成型工藝淀粉原位凝固技術(shù)制備了可控孔隙結(jié)構(gòu)的β-磷酸三鈣骨組織工程修復(fù)支架。 本研究以制備可控孔隙結(jié)構(gòu)的β-磷酸三鈣骨組織工程修復(fù)支架為目的,探討和優(yōu)化了支架制備工藝流程。通過對漿料流變性能的檢測,確定分散劑聚丙烯酸鈉加入量為1wt%,凝固劑淀粉加入量為1.5wt%所配置的固相含量為50%(V/V)的β-磷酸三鈣漿料具有較低的粘度,符合凝膠注模成型工藝對漿料的要求。采用快速原型技術(shù)構(gòu)造了三種不同形貌的高分子多孔模板,并進一步通過漿料灌注和凝膠注模淀粉原位凝固技術(shù)制備出以β-磷酸三鈣為主要成分的三維多孔支架,實現(xiàn)了對骨組織工程支架孔結(jié)構(gòu)的控制。采用微計算機斷層掃描技術(shù),在不破壞樣品的情況下,精確地對支架的孔隙結(jié)構(gòu)進行了觀察和表征,并對支架的物相組成、顯微形貌以及抗壓強度進行了分析和測試。采用高分子模板制備的規(guī)則孔結(jié)構(gòu)支架,大孔隙相互連通構(gòu)成三維連通結(jié)構(gòu),并且具有大孔-微孔多級孔結(jié)構(gòu),抗壓強度可達2MPa以上,大孔孔隙率為50%以上。結(jié)果表明,通過快速原型技術(shù)制備的連通多孔高分子模板,結(jié)合原位凝固成型技術(shù),可以制備出孔徑和結(jié)構(gòu)可控、孔隙完全連通的β-磷酸三鈣支架。其中采用高分子模板B制備的規(guī)則孔結(jié)構(gòu)支架B,大孔孔徑尺寸約為800m,平均壓縮強度為2.21±0.36MPa,大孔孔隙率為53.2%。 本研究利用灌注-冷凍干燥技術(shù)和真空鍍膜技術(shù),采用三種具有良好生物相容性的高分子材料(殼聚糖、明膠和PLGA)與β-磷酸三鈣多孔支架進行了復(fù)合,以達到增強多孔支架的力學(xué)性能,改善支架大孔結(jié)構(gòu)的目的。實驗表明,采用灌注-冷凍干燥技術(shù)制備的復(fù)合支架大孔結(jié)構(gòu)被填充。采用真空鍍膜技術(shù)制備的復(fù)合支架可以在無機支架骨架上覆蓋一層薄膜。在力學(xué)性能方面,相比于原無機支架,復(fù)合后支架的韌性均得到了很大改善。其中,采用PLGA復(fù)β-TCP無機支架,保留了原來的大孔結(jié)構(gòu),復(fù)合支架抗壓強度能達到2.25±0.15MPa,形變量可達30%。明膠/β-磷酸三鈣多孔支架能夠獲得較好的力學(xué)性能,其抗壓強度可達到3.18±0.55MPa,形變量可達50%。所制備的支架基本上能夠滿足非承重部位骨缺損修復(fù)的要求,有望經(jīng)進一步改善后應(yīng)用于臨床。
[Abstract]:An ideal scaffold for tissue engineering requires a three-dimensional connected pore structure and a certain mechanical strength. The traditional method of hole making has poor controllability to the aperture size and connectivity. The newly developed rapid prototyping manufacturing technology has high precision and can be used to shape the parts with complex shape and has the ability to control the scaffold structure of bone tissue engineering. But at present, rapid prototyping technology can only form some biologically inert polymer materials. In this study, the 尾 -tricalcium phosphate bone tissue engineering scaffold with controllable pore structure was prepared by rapid prototyping and starch in-situ solidification. In order to prepare 尾 -tricalcium phosphate bone tissue engineering scaffolds with controllable pore structure, the preparation process of the scaffolds was discussed and optimized. By testing the rheological properties of the slurry, it was determined that the 尾 -tricalcium phosphate slurry with dispersing agent sodium polyacrylate and coagulant starch with solid content of 50 V / V) had low viscosity, and the content of coagulant starch was 1.5 wt%. In accordance with the gel injection molding process for slurry requirements. Three kinds of macromolecule porous templates with different morphologies were constructed by rapid prototyping technique. Furthermore, three dimensional porous scaffolds with 尾 -tricalcium phosphate as the main component were prepared by slurry pouring and gel injection starch in-situ solidification. The structure of scaffold hole in bone tissue engineering is controlled. The pore structure of the scaffold was observed and characterized accurately by means of microcomputed tomography without destroying the sample. The phase composition, microstructure and compressive strength of the scaffold were analyzed and tested. The regular pore structure scaffold prepared by macromolecule template is connected with each other to form a three-dimensional connected structure, and has a macroporous and microporous multistage pore structure, the compressive strength can reach more than 2 MPA, and the porosity of macropore is more than 50%. The results showed that the porous polymer template prepared by rapid prototyping, combined with in-situ solidification technology, could be used to prepare 尾 -tricalcium phosphate scaffolds with controllable pore size and structure and complete connectivity of pores. The regular pore structure scaffold B prepared by polymer template B has a pore size of about 800 m, an average compression strength of 2.21 鹵0.36 MPa and a porosity of 53.22MPa. In this study, three kinds of polymer materials (chitosan, gelatin and PLGA) with good biocompatibility were used to combine 尾 -tricalcium phosphate porous scaffold with perfusion freeze-drying and vacuum coating technology. In order to enhance the mechanical properties of porous scaffolds and improve the structure of macroporous scaffolds. The experimental results show that the macroporous structure of composite scaffold prepared by perfusion-freeze-drying technique is filled. The composite scaffolds prepared by vacuum coating technology can be coated on the inorganic scaffold skeleton. In terms of mechanical properties, compared with the original inorganic scaffold, the toughness of the composite scaffold has been greatly improved. Among them, PLGA complex 尾 -TCP inorganic scaffolds retain the original macroporous structure, the compressive strength of the composite scaffold can reach 2.25 鹵0.15 MPA, and the shape variable can reach 30 parts. The gelatin / 尾 -tricalcium phosphate porous scaffold can obtain better mechanical properties, its compressive strength can reach 3.18 鹵0.55 MPA, and the shape variable can reach 50 MPA. The scaffold can basically meet the requirements of bone defect repair in non-load-bearing site, and it is expected to be used in clinical practice after further improvement.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:R318.08
【參考文獻】
相關(guān)期刊論文 前10條
1 劉衛(wèi)華;賈成廠;郭志猛;;凝膠注模成形技術(shù)理論研究[J];材料導(dǎo)報;2006年01期
2 王剛,閻逢元,石雷,楊祖華;精密陶瓷凝膠注模成型工藝評述[J];材料科學(xué)與工程學(xué)報;2003年04期
3 琚晨輝;葉建東;王燕民;黃云;;用氧化淀粉實現(xiàn)氧化鋁陶瓷的原位凝固成型[J];稀有金屬材料與工程;2007年S1期
4 陳景帝;王迎軍;陳曉峰;尹詩衡;;利用冷凍干燥原位構(gòu)筑仿生型納米羥基磷灰石、殼聚糖多孔支架材料[J];稀有金屬材料與工程;2009年S3期
5 成國煌;殷義霞;陳曉明;;水基高固相含量β-磷酸三鈣漿料的制備及其流變性研究[J];功能材料;2006年12期
6 吳彤;葉建東;琚晨輝;王萍;;用改性淀粉原位凝固成型制備Al_2O_3陶瓷[J];硅酸鹽通報;2006年02期
7 趙娜如;康海峰;劉夢姣;孫原龍;李培巍;;pH值及分散劑對沉淀法制備β-磷酸三鈣粉體性能的影響[J];硅酸鹽通報;2010年01期
8 羅德福;趙康;陳永楠;馬楚凡;吳少旭;;內(nèi)部連接的球形多孔羥基磷灰石支架的制備[J];硅酸鹽學(xué)報;2007年03期
9 趙娜如;康海峰;魏煊;劉夢姣;葉建東;李培巍;;原位凝固成型法制備可控孔隙結(jié)構(gòu)的多孔β-磷酸三鈣陶瓷[J];硅酸鹽學(xué)報;2010年12期
10 司文捷;直接凝固注模成型Si_3N_4及SiC陶瓷──基本原理及工藝過程[J];硅酸鹽學(xué)報;1996年01期
本文編號:2017056
本文鏈接:http://sikaile.net/yixuelunwen/swyx/2017056.html