絲素蛋白對PP和PET的表面改性及改性后材料表面礦化研究
本文選題:PP + PET。 參考:《復(fù)旦大學(xué)》2012年碩士論文
【摘要】:作為物理化學(xué)性能優(yōu)異、原料來源豐富且價格低廉的塑料,聚丙烯(Polypropylene, PP)和聚對苯二甲酸乙二醇酯(Poly(ethylene terephthalate), PET)已在汽車、家電、日用品及家具、包裝等國民經(jīng)濟和日常生活中各個領(lǐng)域得到廣泛應(yīng)用。但與大多數(shù)聚合物材料一樣,PP和PET存在著大量的表面和界面問題,如表面硬度低、阻隔性差、難印刷、難粘接,特別是生物相容性差,這大大限制了其在生物醫(yī)藥領(lǐng)域的應(yīng)用。目前,生物材料的研究捷徑之一是對已有的物理機械性能俱佳的合成高分子材料進行表面改性,因此,若能對PP、PET的惰性表面進行生物相容性改進,我們將有望開發(fā)出以此為基體的生物材料,極大地拓展其應(yīng)用空間。 蠶絲素蛋白(Silk Fibroin, SF)作為一種來源廣,價格低的生物大分子,由于具備優(yōu)異的生物相容性、可生物降解性、透氣透氧性以及較低的炎癥反應(yīng)而被廣泛用于生物醫(yī)藥領(lǐng)域,其在酶固定化電極、藥物緩釋載體和組織工程支架等的研究中表現(xiàn)出了優(yōu)異的非免疫原性和生物相容性,能夠很好地促進細(xì)胞的粘附、生長和分化。與此同時,作為脊椎動物骨骼的主要組成部分,磷酸鈣(Calcium Phosphate, CP),特別是其代表羥基磷灰石(Hydroxyapatite, HAP)由于良好的生物相容性和誘導(dǎo)成骨能力被廣泛應(yīng)用于組織工程支架研究。這其中,利用交替礦化法、模擬體液礦化法和共沉淀等方法,大量的絲素蛋白/羥基磷灰石支架材料已被相繼報道。 基于此,本文希望從絲素蛋白固定和羥基磷灰石礦化兩方面進行PP和PET的生物相容性改進研究。絲素蛋白的固定主要采用了共價結(jié)合和溶液浸涂兩種方法,并以對PP的改性為基礎(chǔ)進行了實驗方法的初步探索。PET的改性中我們對兩種絲素蛋白固定方法進行了深入的探討,全面分析了二者改性效果的異同及其產(chǎn)生原因。文章最后,我們在表面改性的PET上進行了羥基磷灰石的礦化,討論了不同改性對礦化的影響及礦化后材料的生物相容性。 絲素蛋白與材料的共價結(jié)合通過其與接枝于材料表面的聚丙烯酸(Poly(acrylic acid), PAA)的相互作用來實現(xiàn)。為此,我們首先進行了PP表面接枝PAA的試驗,分別討論了聚合反應(yīng)時間、單體濃度、聚合反應(yīng)溫度、等離子體處理功率和時間等對PP表面PAA接枝率的影響,并初步得到PAA接枝反應(yīng)的較適宜條件:單體濃度40%,反應(yīng)溫度80℃,等離子體處理功率75W,等離子體處理時間90s。 我們以等離子體功率100W、處理時間120s,丙烯酸(Acrylic Acid, AA)單體濃度40%(v/v),聚合反應(yīng)溫度800C、時間4h的條件在PP膜表面接枝PAA(標(biāo)記為PP-PAA,其中PAA接枝率GD=0.33±0.18μg/cm2),并借助偶聯(lián)劑在其表面固定絲素蛋白(所得材料為PP-PAA-SF);同時利用等離子體處理后直接浸涂絲素蛋白的方法制得PP-SF材料。大鼠間骨髓間充質(zhì)干細(xì)胞(Mesenchymal stem cells, MSCs)的培養(yǎng)實驗結(jié)果表明,PP-PAA-SF由于PAA的存在引入了細(xì)胞毒性,對MSCs的生長有抑制作用,而PP-SF則促進了MSCs的生長。 為降低PAA的接枝率,在PET表面接枝PAA的實驗中我們將AA濃度降至20%(v/v),得到接枝率GD=0.19±0.05μg/cm2的PET-PAA,并采取與PP表面固定SF相同的方法制取PET-PAA-SF和1PET-SF兩種材料。我們利用表面衰減全反射紅外光譜(ATR-FTIR)、X射線光電子能譜(XPS)、原子力顯微鏡(AFM)和水接觸角(WCA)等對經(jīng)過不同表面改性處理的PET膜進行了表征。XPS結(jié)果表明,PET-PAA-SF膜上確實建立了PAA與SF的共價連接,PET-SF由于等離子體處理在PET表面引入了羧基等極性基團,除了疏水、靜電力相互作用外,SF還通過部分共價相互作用固定在PET表面。兩者相比較,PET-SF表面絲蛋白的固定量多于PET-PAA-SF,這樣的差異可能是由于固定SF前兩者表面粗糙度(對應(yīng)于比表面積)的不同造成的:AFM表征顯示,等離子體處理對PET產(chǎn)生了明顯的刻蝕,極大提高了材料表面粗糙度,而接枝PAA后由于PAA對材料表面的填平效應(yīng),得到的PET-PAA其表面粗糙度大大降低至原始PET的水平。固定SF后PET-PAA-SF與PET-SF的表面粗糙度相近,但是后者的水接觸角小于前者。 在MSCs的培養(yǎng)中,與PP-SF和PP-PAA-SF的實驗結(jié)果類似,PET-SF再次表現(xiàn)出優(yōu)異的細(xì)胞親和力,而PET-PAA-SF則抑制了細(xì)胞的生長。這表明相對于將絲素蛋白共價結(jié)合于接枝PAA的聚合物材料表面,等離子體處理后直接浸涂絲素蛋白是更簡便易行且能顯著提高材料生物相容性的改性方法。 對于經(jīng)不同改性的PET無紡布于CaCl2和Na2HPO4溶液中交替礦化后的樣品,掃描電子顯微鏡(SEM)和熱失重分析(TGA)結(jié)果表明,PAA接枝和絲素蛋白固定由于引入了可以螯合鈣離子的羧基等極性基團,極大提高了材料表面磷酸鈣鹽的沉積量,這種影響在礦化次數(shù)較少時表現(xiàn)明顯,并隨著礦化次數(shù)的增多,無機物逐漸布滿基底后減弱。XRD表征結(jié)果證明這種交替礦化方法在材料表面產(chǎn)生的磷酸鈣鹽為羥基磷灰石。隨后,我們對PET-SF和PET-PAA-SF膜材料進行1O個礦化循環(huán)的磷酸鈣沉積制備PET-SF-10(HAP)和PET-PAA-SF-10(HAP)。MSCs培養(yǎng)結(jié)果表明,相對于有較好MSCs親和力的PET-SF, PET-SF-10(HAP)由于HAP的引入生物相容性進一步提高。PET-PAA-SF-10(HAP)相對于PET-PAA-SF雖然對MSCs的粘附生長有所促進,但由于HAP引入的量大部分用于抵消PAA的細(xì)胞毒性,所以改善幅度不是很大。 至此,我們的實驗為韌帶組織工程的材料改性提供了很好的參考依據(jù),即在構(gòu)建兩端具有成骨能力而中部有良好生物相容性的人工韌帶時,可以采用等離子體處理后浸涂絲素蛋白的方法先將韌帶材料表面固定一層具有良好生物相容性的絲素蛋白,而后材料兩端可以利用在CaCl2和Na2HPO4溶液中交替礦化的方法引入羥基磷灰石,使其在生物體內(nèi)更好的促進成骨。
[Abstract]:As a plastic with excellent physical and chemical properties, rich in raw materials and low price, polypropylene (Polypropylene, PP) and polyethylene terephthalate (Poly (ethylene terephthalate), PET) have been widely used in various fields such as automobiles, household appliances, daily necessities and furniture, packaging and other fields of daily life. PP and PET have a large number of surface and interface problems, such as low surface hardness, poor barrier property, difficult printing, difficult adhesion, especially poor biocompatibility, which greatly restricts its application in the field of biological medicine. At present, one of the shortcuts for biological materials is synthetic polymer material with good physical and Mechanical properties. The material is surface modified, so if we can improve the biocompatibility of the inert surface of PP and PET, we will be expected to develop the biomaterial based on it and greatly expand its application space.
Silk Fibroin (SF) is widely used in biological medicine because of its excellent biocompatibility, biodegradability, permeability, oxygen permeability and low inflammatory response. It has been used in the research of enzyme immobilized electric pole, drug sustained-release carrier and tissue engineering scaffold, for its excellent biocompatibility, biodegradability, permeability and low inflammatory reaction. It shows excellent non immunogenicity and biocompatibility, and can promote cell adhesion, growth and differentiation. At the same time, as the main component of vertebrate skeleton, Calcium Phosphate (CP), especially it represents hydroxyapatite (Hydroxyapatite, HAP) due to good biocompatibility and induction of osteogenesis. Capacity has been widely used in the study of tissue engineering scaffolds. Among them, a large number of silk fibroin / hydroxyapatite scaffolds have been reported in succession by means of alternation mineralization, simulated humoral mineralization and coprecipitation.
Based on this, this paper hopes to study the biocompatibility improvement of PP and PET from two aspects of silk fibroin fixation and hydroxyapatite mineralization. The immobilization of silk fibroin mainly adopts covalent binding and solution leaching two methods, and the experimental method based on the modification of PP is a preliminary exploration of the modification of the two kinds of silk fibroin in the modification of the silk fibroin. The method of protein fixation was deeply discussed, and the differences and similarities between the two modified effects were analyzed and the causes were analyzed. At the end of this article, we carried out the mineralization of hydroxyapatite on the surface modified PET, and discussed the effect of different modification on mineralization and the biocompatibility of the materials after mineralization.
The covalent binding of silk fibroin to the material is realized by its interaction with polyacrylic acid (Poly (acrylic acid) and PAA) grafted on the surface of the material. To this end, we first carried out an experiment on the grafting of PAA on the PP surface. The polymerization reaction time, monomer concentration, polymerization temperature, plasma treatment power and time were discussed respectively on the PP table. The effect of the grafting ratio of PAA on the surface was obtained, and the suitable conditions for the graft reaction of PAA were obtained: the monomer concentration was 40%, the reaction temperature was 80, the plasma treatment power was 75W, and the plasma treatment time was 90s.
We use plasma power 100W, treatment time 120s, acrylic acid (Acrylic Acid, AA) monomer concentration 40% (v/v), polymerization reaction temperature 800C, time 4H conditions on the PP membrane surface grafting PAA (labeled PP-PAA, PAA graft ratio is + 0.18 mu), and with the aid of coupling agent on the surface of silk fibroin fixed (obtained material is); PP-SF material was prepared by direct dip coating of silk fibroin after plasma treatment. The experimental results of Mesenchymal stem cells (MSCs) in rat bone marrow mesenchymal stem cells (MSCs) showed that PP-PAA-SF caused cytotoxicity in the presence of PAA and inhibited the growth of MSCs, while PP-SF promoted the growth of MSCs.
In order to reduce the grafting rate of PAA, the concentration of AA was reduced to 20% (v/v) in the experiment on the surface of PET, and the graft ratio was GD=0.19 + 0.05 g/cm2 PET-PAA, and two kinds of PET-PAA-SF and 1PET-SF materials were made with the same method as PP surface fixed SF. S), atomic force microscopy (AFM) and water contact angle (WCA) were used to characterize the PET films treated with different surface modification, and the.XPS results showed that the covalent connection between PAA and SF was established on the PET-PAA-SF film, PET-SF because the plasma treatment introduced the carboxyl group and other polar groups on the PET surface, except for hydrophobicity and static electricity interaction. A partial covalent interaction is fixed on the PET surface. Compared to the two, the fixed amount of the PET-SF surface silk protein is more than that of PET-PAA-SF. This difference may be caused by the difference of surface roughness (corresponding to the surface area) before the fixed SF. The AFM characterization shows that the plasma treatment has produced a significant etching of the PET, which greatly improved. The surface roughness of the material, and the surface roughness of the PET-PAA obtained by the grafting of PAA on the surface of the material after the grafting of PAA, is greatly reduced to the level of the original PET. After fixed SF, the surface roughness of PET-PAA-SF is similar to that of the PET-SF, but the water contact angle of the latter is less than that of the former.
In the culture of MSCs, similar to the experimental results of PP-SF and PP-PAA-SF, PET-SF showed excellent cell affinity again, while PET-PAA-SF inhibited the growth of cells. This indicates that it is easier and easier to directly dip silk fibroin in plasma at the surface of the polymer material grafted with fibroin protein. A modified method that can significantly improve the biocompatibility of materials.
The results of scanning electron microscopy (SEM) and thermal weight loss analysis (TGA) for samples of different modified PET non-woven fabrics in CaCl2 and Na2HPO4 solutions show that PAA graft and fibroin protein immobilization have greatly improved the deposition of calcium phosphate on the surface of the material by introducing the carboxyl group and other polar groups that chelate calcium ions. The effect is obvious when the number of mineralization is less, and with the increase of the number of mineralization, the.XRD characterization results show that the calcium phosphate produced by this alternating mineralization method is hydroxyapatite with the increase of the number of mineralization. Then, the calcium phosphate deposition of the 1O mineralization cycle of the PET-SF and PET-PAA-SF membrane materials is then made. The results of PET-SF-10 (HAP) and PET-PAA-SF-10 (HAP).MSCs culture showed that, as compared with PET-SF with better MSCs affinity, PET-SF-10 (HAP) was further enhanced by the introduction of HAP to the biocompatibility of HAP. Cytotoxicity, so the improvement is not very large.
At this point, our experiment provides a good reference for the material modification of the ligament tissue engineering, that is, when constructing the artificial ligaments with good biocompatibility in the middle of the two ends, we can use plasma treatment to fix the surface of the ligament material on the surface of the ligament with good biocompatibility first. The silk fibroin, which can be used in CaCl2 and Na2HPO4 solutions alternately mineralized, is introduced into the hydroxyapatite, which makes it better to promote osteogenesis in the organism.
【學(xué)位授予單位】:復(fù)旦大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:R318.08
【參考文獻】
中國期刊全文數(shù)據(jù)庫 前8條
1 陳寶林;組織工程材料的細(xì)胞相容性研究(Ⅰ)──細(xì)胞相容性材料[J];呼倫貝爾學(xué)院學(xué)報;2000年03期
2 陳寶林;王東安;封麟先;;細(xì)胞相容性組織工程材料研究[J];呼倫貝爾學(xué)院學(xué)報;2005年05期
3 蘭彥;尤慶亮;程誠;張素貞;倪國華;M.NAGATSU;孟月東;;Graft Polymerization of Acrylic Acid on a Polytetrafluoroethylene Panel by an Inductively Coupled Plasma[J];Plasma Science and Technology;2011年01期
4 周文;黃郁芳;邵正中;陳新;;鐵和錳對桑蠶絲蛋白構(gòu)象轉(zhuǎn)變的影響[J];化學(xué)學(xué)報;2007年19期
5 曹惠;陳新;邵正中;;羥基磷灰石/絲素蛋白復(fù)合纖維的制備及其礦化研究[J];化學(xué)學(xué)報;2008年18期
6 李偉,李幼榮,潘寧;再生絲素固定的酶標(biāo)免疫傳感器的研究[J];生物工程學(xué)報;2001年06期
7 楊曉芳,奚廷斐;生物材料生物相容性評價研究進展[J];生物醫(yī)學(xué)工程學(xué)雜志;2001年01期
8 陳寶林;王東安;封麟先;;組織工程材料表面物理化學(xué)性質(zhì)對細(xì)胞相容性的影響(英文)[J];中國組織工程研究與臨床康復(fù);2007年01期
,本文編號:2006592
本文鏈接:http://sikaile.net/yixuelunwen/swyx/2006592.html