納米仿生皮膚傳熱傳質(zhì)特性研究
本文選題:納米仿生皮膚 + 發(fā)汗冷卻; 參考:《武漢大學(xué)》2014年博士論文
【摘要】:移動(dòng)通訊設(shè)備的迅速發(fā)展,使得高性能手機(jī)有可能代替計(jì)算機(jī)成為下一代通用移動(dòng)電子設(shè)備,然而其實(shí)現(xiàn)仍有一道技術(shù)瓶頸,那就是散熱。本文在傳統(tǒng)散熱技術(shù)基礎(chǔ)上,結(jié)合最新納米技術(shù)的發(fā)展,提出了一種新的用于手機(jī)表面溫度控制的發(fā)汗冷卻(Transpiration Cooling)技術(shù)—納米仿生皮膚。其基本思路是模仿生物體體溫調(diào)節(jié)的機(jī)理,當(dāng)設(shè)備發(fā)熱較多或者設(shè)備所處環(huán)境溫度較高時(shí),從納米多孔表面(即“皮膚”)釋放出水分(即“汗”),利用水分的蒸發(fā)相變和質(zhì)傳遞帶走大量的熱量。蒸發(fā)(即“發(fā)汗”)過程中散失的水分,可以在電子設(shè)備充電的時(shí)候,從空氣中冷凝在微納米結(jié)構(gòu)壁面上,繼而輸運(yùn)到貯水介質(zhì)納米級(jí)溫度敏感型水凝膠中;谠擁(xiàng)技術(shù),本文重點(diǎn)研究冷凝取水過程中微納米拓?fù)浣Y(jié)構(gòu)對(duì)取水效率的影響以尋找高效的冷凝壁面,以及發(fā)汗冷卻過程中納米多孔介質(zhì)內(nèi)的蒸發(fā)問題,最后對(duì)整個(gè)納米仿生皮膚進(jìn)行測(cè)試。 本文具體的研究內(nèi)容和結(jié)論包括: (1)納米仿生皮膚冷凝取水,其本質(zhì)上為含不凝結(jié)氣體的蒸汽冷凝問題。本部分提出了兩種可以直接在金屬銅基底上合成的微納米拓?fù)浣Y(jié)構(gòu)-潤濕性梯度結(jié)構(gòu)和微納米二級(jí)穹頂結(jié)構(gòu),冷凝實(shí)驗(yàn)結(jié)果表明前者冷凝效率為光滑銅表面的1.3倍,而后者表面上可以形成持續(xù)穩(wěn)定的珠狀凝結(jié),其冷凝效率可以達(dá)到光滑銅表面的1.8倍和普通疏水表面的2倍。通過對(duì)冷凝壁面上的液滴行為進(jìn)一步的理論分析和數(shù)值模擬,證明了微納米拓?fù)浣Y(jié)構(gòu)可以明顯影響冷凝液滴的生長、融合和掃落過程,進(jìn)而影響含不凝結(jié)氣體的蒸汽冷凝效率。 (2)納米仿生皮膚發(fā)汗冷卻,其本質(zhì)上為納米多孔介質(zhì)內(nèi)水分蒸發(fā)問題。通過光學(xué)實(shí)驗(yàn)方法研究了納米仿生皮膚釋水及蒸發(fā)性能,證明了其發(fā)汗冷卻功能的可行性;為了進(jìn)一步強(qiáng)化納米仿生皮膚的發(fā)汗冷卻性能,本部分提出了兩種可以明顯強(qiáng)化液體蒸發(fā)的納米多孔結(jié)構(gòu)—親水及疏水的規(guī)則納米通道,在相對(duì)濕度RH=91%時(shí),兩者單位面積水分蒸發(fā)速率可以分別達(dá)到宏觀水面的30倍和40倍;同時(shí),發(fā)現(xiàn)納米顆粒堆積體系可以降低液體的蒸發(fā)速率。在整個(gè)過程中分析討論了納米結(jié)構(gòu)內(nèi)液體的蒸發(fā)機(jī)理,并得出了通過改變納米結(jié)構(gòu),被動(dòng)的控制液體蒸發(fā)速率的方法。 (3)納米仿生皮膚性能測(cè)試。建立了一套高效穩(wěn)定的納米仿生皮膚凝水和發(fā)汗冷卻系統(tǒng)并進(jìn)行了不同環(huán)境情形下的測(cè)試。結(jié)果表明該冷凝系統(tǒng)在30%-100%相對(duì)濕度范圍內(nèi)均能滿足高性能電子設(shè)備的冷卻需水量(10g);在不同溫度和環(huán)境相對(duì)濕度下,納米仿生皮膚發(fā)汗冷卻的換熱系數(shù)均可達(dá)到自然冷卻(包括自然對(duì)流和輻射)的兩倍以上。 本文不僅提出了一種可行的無風(fēng)扇高性能手機(jī)散熱技術(shù),而且對(duì)其內(nèi)部的基礎(chǔ)的氣液相變問題進(jìn)行了研究。這些不僅能為新型的電子設(shè)備散熱技術(shù)提供指導(dǎo),而且可以為納米結(jié)構(gòu)內(nèi)的傳熱傳質(zhì)提供新的啟示。
[Abstract]:The rapid development of mobile communication equipment makes it possible for high-performance mobile phones to replace computers to become the next generation of general mobile electronic devices. However, there is still a technical bottleneck, which is heat dissipation. Based on the traditional heat dissipation technology, this paper puts forward a new kind of temperature control for mobile phone surface combined with the development of the latest nanotechnology. Transpiration Cooling technology - Nano biomimetic skin. Its basic idea is to imitate the mechanism of body temperature regulation. When the equipment has more heat or the temperature of the equipment is high, the water ("sweat") is released from the porous surface (that is "skin"), and the evaporation phase change and mass transfer of water are taken away by the mass. The loss of moisture in the process of evaporation ("sweating") can be condensed from the air to the micro nanostructure wall and then transported to the nanoscale temperature sensitive hydrogel in the water storage medium when the electronic equipment is charged. Based on this technique, the paper focuses on the micro and nano topology of the condensing process for water intake. The effect of the rate is to find the efficient condensing wall, and the evaporation problem in the porous media during the perspiration cooling process. Finally, the whole nano biomimetic skin is tested.
The specific contents and conclusions of this paper include:
(1) the condensation of nano biomimetic skin is in essence the condensation of steam containing non condensable gases. In this part, two kinds of nano topologies, wettability gradient structure and micro nano dome structure, which can be synthesized directly on the metal copper substrate, are proposed in this part. The condensation experiment results show that the condensation efficiency of the former is 1.3 times of the smooth copper surface. The latter can form a steady and stable bead like condensation, and the condensation efficiency can reach 1.8 times the surface of the smooth copper and 2 times that of the ordinary hydrophobic surface. By further theoretical analysis and numerical simulation of the droplet behavior on the condensing wall, it is proved that the micro and nano topology can affect the growth, fusion and sweep of the condensate drops obviously. The falling process affects the steam condensing efficiency of non condensable gas.
(2) the nano bionic skin is perspiration cooling, which is essentially water evaporation in nanoscale porous media. Through the optical experimental method, the water release and evaporation properties of nano biomimetic skin are studied, and the feasibility of its perspiration cooling function is proved. In order to further strengthen the perspiration cooling performance of nano biomimetic skin, two kinds of methods are proposed. The nano porous structure, hydrophilic and hydrophobic, is obviously enhanced by the liquid evaporation. At relative humidity of RH=91%, the evaporation rate per unit area of water can reach 30 times and 40 times as much as the macro water surface. Meanwhile, it is found that the deposition rate of the nanoparticles can be reduced. The evaporation mechanism of the liquid in the nanostructure is obtained, and the method of passive control of liquid evaporation rate is obtained by changing the nanostructure.
(3) nano biomimetic skin performance test. A set of efficient and stable nano biomimetic skin condensate and transpiration cooling system were established and tested in different environmental conditions. The results showed that the condensing system could meet the cold water requirement (10g) of high performance electronic equipment in the relative humidity range of 30%-100%; at different temperatures and environment phases. Under humidity, the heat transfer coefficient of nano bionic skin transpiration cooling can be more than two times that of natural cooling (including natural convection and radiation).
This paper not only puts forward a feasible heat dissipation technology for the high performance mobile phone with no fan, but also studies the problem of gas-liquid phase transformation in its inner base, which can not only provide guidance for the new electronic equipment heat transfer technology, but also provide new inspiration for the heat and mass transfer in the nanostructure.
【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TB383.1;R318.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前7條
1 吉洪亮;張長瑞;曹英斌;;發(fā)汗冷卻材料研究進(jìn)展[J];材料導(dǎo)報(bào);2008年01期
2 竇光宇;能夠“發(fā)汗”的降溫材料[J];金屬世界;2005年03期
3 張振琪;會(huì)“出汗”的材料[J];百科知識(shí);2005年07期
4 胡元辰;張新生;崔爽;任文鋒;余亮英;胡雪蛟;;利用溫度敏感型水凝膠進(jìn)行仿生發(fā)汗冷卻[J];化工學(xué)報(bào);2012年07期
5 孫百順;;鎢滲銅材料性能的研究[J];固體火箭技術(shù);1990年01期
6 洪長青;孟松鶴;韓文波;;電弧加熱器環(huán)境下雙連續(xù)TiB_2-(Cu,Ni)復(fù)合材料的發(fā)汗冷卻行為[J];稀有金屬材料與工程;2007年S1期
7 ;[J];;年期
相關(guān)會(huì)議論文 前1條
1 劉偉強(qiáng);孫文勝;張峰;張擘毅;;發(fā)汗冷卻層板結(jié)構(gòu)的受熱皺損分析[A];首屆全國航空航天領(lǐng)域中的力學(xué)問題學(xué)術(shù)研討會(huì)論文集(下冊(cè))[C];2004年
相關(guān)博士學(xué)位論文 前7條
1 聶濤;層板式鼻錐的結(jié)構(gòu)特性與傳熱分析研究[D];國防科學(xué)技術(shù)大學(xué);2013年
2 黃拯;高溫與超音速條件下發(fā)汗冷卻基礎(chǔ)問題研究[D];清華大學(xué);2015年
3 黃志;納米仿生皮膚傳熱傳質(zhì)特性研究[D];武漢大學(xué);2014年
4 丁亮;燒結(jié)多孔介質(zhì)材料發(fā)汗冷卻的研究[D];中國科學(xué)技術(shù)大學(xué);2012年
5 熊宴斌;超聲速主流條件發(fā)汗冷卻的流動(dòng)和傳熱機(jī)理研究[D];清華大學(xué);2013年
6 張峰;層板發(fā)汗冷卻理論分析及應(yīng)用研究[D];國防科學(xué)技術(shù)大學(xué);2008年
7 金韶山;液體火箭發(fā)動(dòng)機(jī)推力室及鈍體頭錐發(fā)汗冷卻研究[D];清華大學(xué);2008年
相關(guān)碩士學(xué)位論文 前1條
1 李永宏;多孔發(fā)汗冷卻控制及數(shù)值模擬[D];大連理工大學(xué);2007年
,本文編號(hào):1829498
本文鏈接:http://sikaile.net/yixuelunwen/swyx/1829498.html