非融合人工椎體疲勞實(shí)驗(yàn)與有限元仿真
本文選題:人工椎體 + 非融合技術(shù); 參考:《天津理工大學(xué)》2017年碩士論文
【摘要】:近年來(lái),腰椎間盤(pán)突出、腫瘤和暴力外傷等導(dǎo)致腰椎病變受損的疾病成為生活中常見(jiàn)病,患者腰椎正常的生理活動(dòng)受限。目前重建病變腰椎生理功能和力學(xué)特性的方法主要是采用脊柱融合技術(shù),脊柱融合技術(shù)雖然能夠重建病變椎體的生理結(jié)構(gòu),卻并不能恢復(fù)椎體骨原有的活動(dòng)度。為此課題組以脊柱生物力學(xué)與材料學(xué)為依據(jù)設(shè)計(jì)了一種新型非融合技術(shù)人工椎體,在患者使用此非融合人工椎體置換后重建了原有脊柱結(jié)構(gòu)的同時(shí)維持了一定的相鄰椎體骨節(jié)段間活動(dòng)度;人工椎體在植入人體后長(zhǎng)時(shí)間受到人體的軸向壓縮、扭轉(zhuǎn)與側(cè)向彎曲、前后屈曲等力的交互作用,有必要對(duì)設(shè)計(jì)出的人工椎體進(jìn)行力學(xué)實(shí)驗(yàn)與有限元仿真。利用萬(wàn)能拉壓電子試驗(yàn)機(jī)對(duì)人工椎體樣件進(jìn)行軸向壓縮疲勞試驗(yàn),采用500萬(wàn)次2 Hz 0.3 KN的正弦軸向壓力對(duì)其進(jìn)行疲勞實(shí)驗(yàn),觀察其疲勞特性,在疲勞實(shí)驗(yàn)開(kāi)始時(shí)及每經(jīng)過(guò)100萬(wàn)次疲勞載荷試驗(yàn)后對(duì)人工椎體樣件進(jìn)行軸向壓縮實(shí)驗(yàn),以測(cè)量其剛度變化;疲勞實(shí)驗(yàn)前后對(duì)人工椎體樣件進(jìn)行超聲波清洗,用電子稱(chēng)來(lái)檢測(cè)其植入人體后的材料磨損量。利用微控扭轉(zhuǎn)試驗(yàn)機(jī)進(jìn)行扭轉(zhuǎn)實(shí)驗(yàn),測(cè)量人工椎體與人工椎間盤(pán)的扭轉(zhuǎn)角度與扭矩的關(guān)系;利用逆向工程技術(shù)建立了一種新型非融合人工椎體的植入人體后的有限元置換模型,在Ansys Workbench分析其植入人體后的應(yīng)力與疲勞壽命分布,為投入臨床應(yīng)用提供數(shù)據(jù)參考。由鈦合金托板、立柱與醫(yī)用硅膠髓核組裝而成的人工椎體的結(jié)構(gòu)合理,在軸向壓縮、扭轉(zhuǎn)試驗(yàn)中,人工椎體與原置換組織的運(yùn)動(dòng)范圍與力學(xué)性能相仿;人工椎體樣件在200~300萬(wàn)次軸向疲勞載荷作用后,軸向壓縮性能趨于穩(wěn)定;500萬(wàn)次疲勞試驗(yàn)后,沒(méi)有出現(xiàn)裂紋破壞等失效,材料間磨損量小,減少了異物進(jìn)入內(nèi)環(huán)境對(duì)健康造成危害,應(yīng)力遠(yuǎn)低于其屈服強(qiáng)度;有限元仿真顯示人工椎體置換模型應(yīng)力分布均勻,疲勞分析顯示其有著較高的疲勞壽命。此非融合人工椎體結(jié)構(gòu)設(shè)計(jì)合理,植入人體能夠恢復(fù)椎體間原有的活動(dòng)度,對(duì)臨近節(jié)段生物力學(xué)性能影響不大,能夠滿足長(zhǎng)期植入人體的要求。
[Abstract]:In recent years, lumbar disc herniation, tumor and violent trauma have become common diseases in life, and the normal physiological activities of lumbar vertebrae are limited. At present, the main method to reconstruct the physiological function and mechanical properties of the lumbar vertebrae is the spinal fusion technique. Although the spinal fusion technique can reconstruct the physiological structure of the diseased vertebral body, it can not restore the original motion of the vertebral body bone. Based on the biomechanics and material science of the spine, a new non-fusion technique for artificial vertebrae was designed. After using this nonfused artificial vertebral body replacement, the patient reconstructed the original spinal structure while maintaining a certain degree of intersegmental activity of the adjacent vertebrae. The artificial vertebral body was subjected to axial compression, torsion and lateral bending of the human body for a long time after implantation. It is necessary to carry out mechanical experiments and finite element simulation for the designed artificial vertebrae due to the interaction of the equal forces of anterior and posterior buckling. The axial compression fatigue test of artificial vertebrae samples was carried out by using the universal tensile and compression electronic testing machine. The fatigue characteristics of the specimens were observed by using 5 million times of sinusoidal pressure of 2 Hz 0.3KN. At the beginning of fatigue experiment and after 1 million fatigue load tests, axial compression experiments were carried out to measure the stiffness of artificial vertebrae, and ultrasonic cleaning was carried out before and after fatigue test. Electronic weighing is used to measure the material wear after implantation. The relationship between torsion angle and torque of artificial vertebral body and artificial intervertebral disc was measured by micro-controlled torsion test machine, and a new finite element replacement model of artificial vertebral body was established by reverse engineering. The distribution of stress and fatigue life after implantation was analyzed by Ansys Workbench, which provides a data reference for clinical application. The artificial vertebral body composed of titanium alloy supporting plate, column and medical silica gel nucleus is reasonable. In the axial compression and torsion test, the movement range and mechanical properties of the artificial vertebral body and the original replacement tissue are similar. After 200 ~ 3 million axial fatigue loads, the axial compression properties of the artificial vertebral specimens tend to be stable, and after 5 million fatigue tests, there is no failure such as crack failure, and the wear amount between materials is small, which reduces the harm to health caused by the entry of foreign bodies into the inner environment. The stress is far lower than its yield strength, and the finite element simulation shows that the stress distribution of the artificial vertebral replacement model is uniform, and the fatigue analysis shows that the artificial vertebral replacement model has a high fatigue life. The non-fusion artificial vertebrae structure is designed reasonably, the implanted human body can restore the original range of motion between the vertebrae, and has little effect on the biomechanical properties of the adjacent segments, which can meet the requirements of long-term implantation of the human body.
【學(xué)位授予單位】:天津理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:R687.3;R318.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前4條
1 張澤函;王成剛;馬洪順;王玉臣;裴秀榮;;人撓骨的疲勞實(shí)驗(yàn)研究[J];試驗(yàn)技術(shù)與試驗(yàn)機(jī);1990年01期
2 廖東華,韓海潮,,李良?jí)?離體脛骨的疲勞實(shí)驗(yàn)研究[J];醫(yī)用生物力學(xué);1995年04期
3 吳岳恒;黃煥雷;姚麗明;周嘉輝;祁周措;成安衡;余細(xì)勇;肖學(xué)鈞;;嬰幼兒心室輔助泵——20mL羅葉泵體外測(cè)試平臺(tái)的建立和性能研究[J];生物醫(yī)學(xué)工程與臨床;2013年05期
4 陳文東;付濤;潘思佳;陳祥蓉;管家齊;;貞杞口服液抗視疲勞實(shí)驗(yàn)研究[J];中華中醫(yī)藥學(xué)刊;2013年04期
相關(guān)會(huì)議論文 前3條
1 王清遠(yuǎn);;振動(dòng)加速循環(huán)應(yīng)力長(zhǎng)壽命疲勞實(shí)驗(yàn)方法及其應(yīng)用[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
2 孟祥祺;許金泉;;電子封裝結(jié)構(gòu)的溫度循環(huán)熱疲勞實(shí)驗(yàn)[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
3 陳永;劉彤;趙明v
本文編號(hào):1828626
本文鏈接:http://sikaile.net/yixuelunwen/swyx/1828626.html