低溫保護(hù)劑去除方法與若干相關(guān)問(wèn)題研究
發(fā)布時(shí)間:2018-03-28 21:37
本文選題:低溫保護(hù)劑 切入點(diǎn):滲透壓 出處:《中國(guó)科學(xué)技術(shù)大學(xué)》2015年博士論文
【摘要】:本文針對(duì)低溫保護(hù)劑的去除過(guò)程,從若干方向上進(jìn)行了相關(guān)研究。本文首先簡(jiǎn)述了低溫保存技術(shù)的若干關(guān)鍵問(wèn)題,介紹了低溫保存技術(shù)中的常用方法與材料,以及細(xì)胞低溫?fù)p傷的分子生物學(xué)機(jī)制,并給出了一些常用的低溫保護(hù)劑及其應(yīng)用。 本文中基于離散化的傳質(zhì)模型,提出了對(duì)稀釋一過(guò)濾型低溫保護(hù)劑去除系統(tǒng)的理論優(yōu)化來(lái)進(jìn)一步減少細(xì)胞損傷與去除時(shí)間。該方法中稀釋液流速通過(guò)程序控制,使得每個(gè)循環(huán)周期中的低溫保護(hù)劑去除量達(dá)到最大,同時(shí)將細(xì)胞體積膨脹一直控制在容許限度以內(nèi)。結(jié)果表明優(yōu)化的稀釋液流速可以有效地縮短低溫保護(hù)劑去除時(shí)間,與固定的稀釋液流速相比減少了超過(guò)50%。該方法在血液流速較低、稀釋區(qū)域體積較大、低溫保護(hù)劑初始濃度較高、或細(xì)胞體積膨脹的容許限度較低時(shí)表現(xiàn)尤為突出。這種方法很好的解決了稀釋一過(guò)濾系統(tǒng)中保證細(xì)胞回收率同時(shí)又盡量減少低溫保護(hù)劑去除時(shí)間的要求,在實(shí)際臨床應(yīng)用中非常適合于凍存血液的快速輸血準(zhǔn)備。 在低溫保護(hù)劑的去除過(guò)程中,理論上完全避免細(xì)胞滲透性損傷的最優(yōu)化操作條件,是基于細(xì)胞參數(shù)均一化的假設(shè)而得出。然而,由于細(xì)胞多分散性,該條件一般難以達(dá)到。本文中基于離散化傳質(zhì)模型,通過(guò)引入三個(gè)隨機(jī)細(xì)胞參數(shù),統(tǒng)計(jì)分析了多分散性對(duì)細(xì)胞回收率的影響。結(jié)果表明,細(xì)胞多分散性的存在導(dǎo)致實(shí)際的細(xì)胞回收率與理想值發(fā)生了偏離。這些偏離隨著細(xì)胞參數(shù)標(biāo)準(zhǔn)差的增大而進(jìn)一步增大,同時(shí)還受到低溫保護(hù)劑初始濃度的影響?紤]到細(xì)胞多分散性,在均勻分布下得到的最優(yōu)化血液或稀釋液流速需要進(jìn)一步完善。實(shí)際應(yīng)用中,則需要采用更保守的血液或稀釋液流速來(lái)進(jìn)一步減小細(xì)胞的滲透性損傷。 本文同時(shí)研究了基于微流控技術(shù)的低溫保護(hù)劑去除方法,設(shè)計(jì)并實(shí)現(xiàn)了一種基于微流控技術(shù)的低溫保護(hù)劑去除芯片,可以連續(xù)地進(jìn)行低溫保護(hù)劑的去除,同時(shí)評(píng)估了一些去除過(guò)程中對(duì)效率造成影響的因素,并通過(guò)實(shí)驗(yàn)加以驗(yàn)證。結(jié)果表明這種低溫保護(hù)劑去除芯片可以對(duì)一定量的細(xì)胞實(shí)現(xiàn)低溫保護(hù)劑去除的效果。由于微流控芯片的流速限制,該方法比較適合于少量而珍貴的樣本。同時(shí),本文在結(jié)果中分析了微流控方法中對(duì)去除效率及細(xì)胞存活率的影響因素,可以為低溫保護(hù)劑去除芯片或其他類(lèi)型的混合一分離結(jié)構(gòu)微流控芯片提供一定的參考價(jià)值。
[Abstract]:In this paper, the removal process of cryopreservation agent is studied from several aspects. Firstly, some key problems of cryopreservation technology are briefly introduced, and the common methods and materials of cryopreservation technology are introduced. The molecular biological mechanism of cell hypothermia injury and some common hypothermia protectants and their applications are also given. Based on the discrete mass transfer model, a theoretical optimization of the dilution-filter low-temperature protective agent removal system is proposed to further reduce cell damage and removal time. In this method, the flow rate of the diluent is controlled by program. At the same time, the cell volume expansion is kept within the allowable limit. The results show that the optimized dilution flow rate can effectively shorten the removal time of the cryogenic protectant. Compared with the fixed diluent flow rate, the method reduces the flow rate by more than 50%. This method has lower blood flow rate, larger volume in the dilution area, and higher initial concentration of low temperature protectant. Or when the allowable limit of cell volume expansion is low, this method is a good solution to the need to ensure cell recovery while minimizing the removal time of cryogenic protectors in a dilution filtration system. It is very suitable for rapid transfusion preparation of frozen blood in clinical application. In the process of removing cryogenic protectants, the optimal operating conditions for completely avoiding cell permeability damage are theoretically based on the assumption of homogenization of cell parameters. Based on the discrete mass transfer model, the influence of polydispersity on cell recovery is statistically analyzed by introducing three random cell parameters. The existence of cell polydispersity leads to the deviation between the actual cell recovery and the ideal value, which increases with the increase of the standard deviation of cell parameters. At the same time, it is also affected by the initial concentration of low temperature protectant. Considering the polydispersity of cells, the optimal flow rate of blood or diluent obtained under uniform distribution needs to be further improved. More conservative blood or diluent flow rates are needed to further reduce cell permeability. At the same time, this paper studies the removal method of low temperature protectant based on microfluidic technology, and designs and implements a low temperature protectant removal chip based on microfluidic technology, which can continuously remove the low temperature protectant. At the same time, some factors that affect efficiency in the process of removal are evaluated. The results show that the microfluidic chip can remove a certain amount of cells. Because the flow rate of microfluidic chip is limited, This method is suitable for a small number of precious samples. At the same time, the factors influencing the removal efficiency and cell survival rate in the microfluidic method are analyzed. It can provide some reference value for removing chip or other kinds of mixed-separation microfluidic chip with low temperature protectant.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:R318.52
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 Elmabruk A. Mansur;葉明星;王運(yùn)東;戴猷元;;微混合器內(nèi)流體混合的研究進(jìn)展(英文)[J];Chinese Journal of Chemical Engineering;2008年04期
,本文編號(hào):1678168
本文鏈接:http://sikaile.net/yixuelunwen/swyx/1678168.html
最近更新
教材專(zhuān)著