3D打印表面多孔結(jié)構(gòu)種植體的生物力學(xué)分析
發(fā)布時(shí)間:2018-03-21 07:28
本文選題:3D打印 切入點(diǎn):孔隙結(jié)構(gòu) 出處:《南昌大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:目的:本實(shí)驗(yàn)將應(yīng)用逆向工程技術(shù)以及計(jì)算機(jī)輔助設(shè)計(jì)的方法構(gòu)建表面帶孔隙結(jié)構(gòu)的種植體3D打印CAD模型,并同時(shí)根據(jù)CBCT數(shù)據(jù)構(gòu)建下前牙CAD模型,采用靜態(tài)應(yīng)力加載的方式,模擬種植體以及下前牙在頜骨內(nèi)的功能性負(fù)荷,用三維有限元分析法探討種植體表面孔隙結(jié)構(gòu)設(shè)計(jì)的生物力學(xué)特點(diǎn)。方法:(1)選取一組正常CBCT數(shù)據(jù)導(dǎo)入Mimics 17.0軟件提取數(shù)據(jù),后運(yùn)用Geomagics studio 11.0建立一段完整的下頜骨模型(包括外層厚度為2mm的皮質(zhì)骨和內(nèi)層的松質(zhì)骨)和下頜中切牙模型;(2)利用3D掃描儀掃描48/18/33/10Straumann種植體獲取相關(guān)數(shù)據(jù),建立種植體CAD模型(RI);后根據(jù)該模型,運(yùn)用Geomagics studio 11.0建立帶孔隙結(jié)構(gòu)的實(shí)心種植體CAD模型(PRI):種植體體部中央實(shí)心部分直徑為2mm,表面孔隙結(jié)構(gòu)層厚度為0.65mm,孔隙結(jié)構(gòu)為環(huán)繞中央實(shí)心部分、與種植體長軸垂直,直徑為0.7mm;(3)利用PRO/E 5.0軟件進(jìn)行下前牙、RI及PRI和頜骨模型的裝配;(4)分別對三組模型進(jìn)行軸向100N力,以及與種植體長軸成45°、頰舌方向120N的靜態(tài)力的加載,加載點(diǎn)位于牙冠切緣中1/2處;(5)利用Ansys Workbench軟件對兩組模型進(jìn)行分析,得到下前牙、RI、PRI以及頜骨的應(yīng)力分布情況。結(jié)果:(1)在兩種力加載時(shí),三組模型的應(yīng)力分布情況大致相同,且分布均勻,下前牙、RI及PRI的應(yīng)力主要集中于頸部,下前牙根尖及RI、PRI根端應(yīng)力分布最小,垂直力加載時(shí)的應(yīng)力低于斜向力加載時(shí)的應(yīng)力,PRI的最大等效應(yīng)力大于RI的最大等效應(yīng)力;(2)在兩種力加載時(shí),三組下頜骨的應(yīng)力分布情況大致相同,且分布均勻,骨組織界面的等效應(yīng)力均集中于與牙和種植體頸部接觸的皮質(zhì)骨和松質(zhì)骨區(qū),最大等效應(yīng)力出現(xiàn)在下前牙唇側(cè)頸緣皮質(zhì)骨區(qū)和RI及PRI唇舌側(cè)頸緣皮質(zhì)骨區(qū),RI組頜骨的最大等效應(yīng)力低于PRI組頜骨的最大等效應(yīng)力。結(jié)論:(1)種植體表面的多孔結(jié)構(gòu)設(shè)計(jì)可以降低種植體表面的彈性模量;(2)在軸向力加載和斜向力加載的情況下,皮質(zhì)骨對種植體表面形貌變化更加敏感,相比RI,PRI的應(yīng)力更好地傳導(dǎo)至頜骨,減少了“應(yīng)力屏蔽”效應(yīng)。
[Abstract]:Objective: to construct a 3D printed CAD model of implant with pore structure by reverse engineering and computer aided design, and at the same time to construct CAD model of lower anterior teeth based on CBCT data, and to use static stress loading method. In order to simulate the functional loading of implants and anterior teeth in the maxilla, the biomechanical characteristics of pore structure design on implant surface were studied by three-dimensional finite element analysis. Methods A group of normal CBCT data was selected to be imported into Mimics 17.0 software to extract data. Then Geomagics studio 11.0 was used to establish a complete mandibular model (including cortical bone with outer thickness of 2mm and cancellous bone in the inner layer) and a central mandibular incisor model, and a 3D scanner was used to scan 48 / 18 / 33 / 10Strauma implants to obtain relevant data. The implant CAD model was established, and then, according to the model, Geomagics studio 11.0 was used to establish the CAD model of solid implants with pore structure. The diameter of the central solid part of the implant was 2 mm, the thickness of the surface pore structure layer was 0.65 mm, and the pore structure was surrounded by the central solid part, perpendicular to the long axis of the implant. Three groups of models were subjected to axial force of 100N, static force of 45 擄to the long axis of implant and 120N of buccal and tongue direction, respectively, using PRO/E 5.0 software to assemble RI and PRI of lower anterior teeth and maxillary model. The stress distribution of the two groups of models was obtained by Ansys Workbench software. The results showed that the stress distribution of the three groups of models was approximately the same when the two forces were applied. The stress distribution of RI and PRI in anterior teeth was mainly concentrated in the neck, and the stress distribution in the tip and tip of anterior teeth was the least. The stress of vertical force is lower than that of oblique force. The maximum equivalent stress of PRI is larger than the maximum equivalent stress of RI. The equivalent stress at the interface of bone tissue was concentrated in the cortical and cancellous bone areas in contact with the neck of teeth and implants. The maximum equivalent stress of the maxilla in RI and RI groups was lower than that in PRI group. Conclusion: 1) the porous knot of implant surface is lower than the maximum equivalent stress of the maxillary bone in the lower lip side of the anterior tooth. Conclusion: the maximum equivalent stress of the maxilla in the RI group is lower than that in the PRI group. Conclusion: 1) the porous knot on the implant surface is lower than that in the PRI group. The structure design can reduce the elastic modulus of implant surface in the case of axial force loading and oblique force loading. The cortical bone is more sensitive to the surface changes of implants, and the stress of RII-PRI is better transmitted to the jaw bone, thus reducing the "stress shielding" effect.
【學(xué)位授予單位】:南昌大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:R783.1;TP391.73
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 劉帥;李湘霞;楊越;趙克;;多孔純鈦孔隙率及孔隙尺寸對蛋白吸附及成骨細(xì)胞分化的影響[J];中華口腔醫(yī)學(xué)研究雜志(電子版);2015年03期
2 陳建宇;羅崇岱;張春雨;張弓;邱偉前;張志光;;計(jì)算機(jī)輔助設(shè)計(jì)及激光快速成形的純鈦髁突對重建顳下頜關(guān)節(jié)可行性探討[J];中華口腔醫(yī)學(xué)雜志;2014年10期
3 王德花;馬筱舒;;需求引領(lǐng) 創(chuàng)新驅(qū)動(dòng)——3D打印發(fā)展現(xiàn)狀及政策建議[J];中國科技產(chǎn)業(yè);2014年08期
4 胡洪成;盧松鶴;毋育偉;李箐;欒慶先;唐志輝;;電子束熔融技術(shù)制作的個(gè)性化根形種植體的制作精度評價(jià)[J];口腔醫(yī)學(xué)研究;2014年06期
5 胡紫英;李美Y,
本文編號:1642857
本文鏈接:http://sikaile.net/yixuelunwen/swyx/1642857.html
最近更新
教材專著