3D打印表面多孔結構種植體的生物力學分析
發(fā)布時間:2018-03-21 07:28
本文選題:3D打印 切入點:孔隙結構 出處:《南昌大學》2017年碩士論文 論文類型:學位論文
【摘要】:目的:本實驗將應用逆向工程技術以及計算機輔助設計的方法構建表面帶孔隙結構的種植體3D打印CAD模型,并同時根據(jù)CBCT數(shù)據(jù)構建下前牙CAD模型,采用靜態(tài)應力加載的方式,模擬種植體以及下前牙在頜骨內的功能性負荷,用三維有限元分析法探討種植體表面孔隙結構設計的生物力學特點。方法:(1)選取一組正常CBCT數(shù)據(jù)導入Mimics 17.0軟件提取數(shù)據(jù),后運用Geomagics studio 11.0建立一段完整的下頜骨模型(包括外層厚度為2mm的皮質骨和內層的松質骨)和下頜中切牙模型;(2)利用3D掃描儀掃描48/18/33/10Straumann種植體獲取相關數(shù)據(jù),建立種植體CAD模型(RI);后根據(jù)該模型,運用Geomagics studio 11.0建立帶孔隙結構的實心種植體CAD模型(PRI):種植體體部中央實心部分直徑為2mm,表面孔隙結構層厚度為0.65mm,孔隙結構為環(huán)繞中央實心部分、與種植體長軸垂直,直徑為0.7mm;(3)利用PRO/E 5.0軟件進行下前牙、RI及PRI和頜骨模型的裝配;(4)分別對三組模型進行軸向100N力,以及與種植體長軸成45°、頰舌方向120N的靜態(tài)力的加載,加載點位于牙冠切緣中1/2處;(5)利用Ansys Workbench軟件對兩組模型進行分析,得到下前牙、RI、PRI以及頜骨的應力分布情況。結果:(1)在兩種力加載時,三組模型的應力分布情況大致相同,且分布均勻,下前牙、RI及PRI的應力主要集中于頸部,下前牙根尖及RI、PRI根端應力分布最小,垂直力加載時的應力低于斜向力加載時的應力,PRI的最大等效應力大于RI的最大等效應力;(2)在兩種力加載時,三組下頜骨的應力分布情況大致相同,且分布均勻,骨組織界面的等效應力均集中于與牙和種植體頸部接觸的皮質骨和松質骨區(qū),最大等效應力出現(xiàn)在下前牙唇側頸緣皮質骨區(qū)和RI及PRI唇舌側頸緣皮質骨區(qū),RI組頜骨的最大等效應力低于PRI組頜骨的最大等效應力。結論:(1)種植體表面的多孔結構設計可以降低種植體表面的彈性模量;(2)在軸向力加載和斜向力加載的情況下,皮質骨對種植體表面形貌變化更加敏感,相比RI,PRI的應力更好地傳導至頜骨,減少了“應力屏蔽”效應。
[Abstract]:Objective: to construct a 3D printed CAD model of implant with pore structure by reverse engineering and computer aided design, and at the same time to construct CAD model of lower anterior teeth based on CBCT data, and to use static stress loading method. In order to simulate the functional loading of implants and anterior teeth in the maxilla, the biomechanical characteristics of pore structure design on implant surface were studied by three-dimensional finite element analysis. Methods A group of normal CBCT data was selected to be imported into Mimics 17.0 software to extract data. Then Geomagics studio 11.0 was used to establish a complete mandibular model (including cortical bone with outer thickness of 2mm and cancellous bone in the inner layer) and a central mandibular incisor model, and a 3D scanner was used to scan 48 / 18 / 33 / 10Strauma implants to obtain relevant data. The implant CAD model was established, and then, according to the model, Geomagics studio 11.0 was used to establish the CAD model of solid implants with pore structure. The diameter of the central solid part of the implant was 2 mm, the thickness of the surface pore structure layer was 0.65 mm, and the pore structure was surrounded by the central solid part, perpendicular to the long axis of the implant. Three groups of models were subjected to axial force of 100N, static force of 45 擄to the long axis of implant and 120N of buccal and tongue direction, respectively, using PRO/E 5.0 software to assemble RI and PRI of lower anterior teeth and maxillary model. The stress distribution of the two groups of models was obtained by Ansys Workbench software. The results showed that the stress distribution of the three groups of models was approximately the same when the two forces were applied. The stress distribution of RI and PRI in anterior teeth was mainly concentrated in the neck, and the stress distribution in the tip and tip of anterior teeth was the least. The stress of vertical force is lower than that of oblique force. The maximum equivalent stress of PRI is larger than the maximum equivalent stress of RI. The equivalent stress at the interface of bone tissue was concentrated in the cortical and cancellous bone areas in contact with the neck of teeth and implants. The maximum equivalent stress of the maxilla in RI and RI groups was lower than that in PRI group. Conclusion: 1) the porous knot of implant surface is lower than the maximum equivalent stress of the maxillary bone in the lower lip side of the anterior tooth. Conclusion: the maximum equivalent stress of the maxilla in the RI group is lower than that in the PRI group. Conclusion: 1) the porous knot on the implant surface is lower than that in the PRI group. The structure design can reduce the elastic modulus of implant surface in the case of axial force loading and oblique force loading. The cortical bone is more sensitive to the surface changes of implants, and the stress of RII-PRI is better transmitted to the jaw bone, thus reducing the "stress shielding" effect.
【學位授予單位】:南昌大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:R783.1;TP391.73
【參考文獻】
相關期刊論文 前8條
1 劉帥;李湘霞;楊越;趙克;;多孔純鈦孔隙率及孔隙尺寸對蛋白吸附及成骨細胞分化的影響[J];中華口腔醫(yī)學研究雜志(電子版);2015年03期
2 陳建宇;羅崇岱;張春雨;張弓;邱偉前;張志光;;計算機輔助設計及激光快速成形的純鈦髁突對重建顳下頜關節(jié)可行性探討[J];中華口腔醫(yī)學雜志;2014年10期
3 王德花;馬筱舒;;需求引領 創(chuàng)新驅動——3D打印發(fā)展現(xiàn)狀及政策建議[J];中國科技產業(yè);2014年08期
4 胡洪成;盧松鶴;毋育偉;李箐;欒慶先;唐志輝;;電子束熔融技術制作的個性化根形種植體的制作精度評價[J];口腔醫(yī)學研究;2014年06期
5 胡紫英;李美Y,
本文編號:1642857
本文鏈接:http://sikaile.net/yixuelunwen/swyx/1642857.html