幾種預(yù)測(cè)方法在甘肅省梅毒發(fā)病率預(yù)測(cè)中的應(yīng)用
[Abstract]:Objective to compare several traditional models and machine learning methods to predict the incidence of syphilis in Gansu Province and to predict the future incidence of syphilis. Methods using MATLAB 2014a software, the mathematical models of syphilis incidence data from 2004 to 2015 in Gansu Province were established, such as polynomial regression, smooth spline interpolation, grey system GM (1 / 1), autoregressive integrated moving average (ARIMA), artificial neural network (ANN) and support vector machine (SVR). Then, according to the actual incidence data of 2016, the prediction effect is tested to select the best prediction model. Finally, the model is used to predict the incidence in 2017-2020. Results the first order polynomial, quadratic polynomial, smoothing spline method, GM (1Q), ARIMA,ANN and SVR models were used to fit the average relative error of syphilis incidence from 2004 to 2015. The average relative errors of syphilis incidence were 20.04 and 22.448.10g, respectively. The incidence rate of syphilis in 2016 was predicted by the smoothing spline model with the minimum of 17.61% and 24.72%, respectively. The ARIMA model is the best one, which is used to predict the incidence of the disease in 2017-2020 at 19.11 / 100,000, 18.21 / 100, 185.7 / 100, and 199,400 / 100, respectively. Conclusion the fitting and forecasting effects of different mathematical models are different, the suitable models should be selected according to the actual data, and the ARIMA model has better performance in predicting syphilis incidence in Gansu Province in recent years, and the incidence rate in 2017-2020 is relatively stable.
【作者單位】: 甘肅省疾病預(yù)防控制中心;
【基金】:甘肅省衛(wèi)生行業(yè)科研計(jì)劃資助項(xiàng)目(GSWSKY-2014-22)
【分類號(hào)】:R759.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郝艷會(huì);趙成新;;應(yīng)用曲線回歸模型預(yù)測(cè)遼陽(yáng)市梅毒發(fā)病率[J];中國(guó)熱帶醫(yī)學(xué);2013年04期
2 蔣法興;20世紀(jì)90年代美國(guó)艾滋病的死亡率促進(jìn)了梅毒發(fā)病率的下降[J];國(guó)外醫(yī)學(xué).皮膚性病學(xué)分冊(cè);2004年03期
3 鄭元達(dá);金華市梅毒發(fā)病率指數(shù)曲線擬合法分析[J];中國(guó)艾滋病性病;2000年03期
4 周先鋒;馮子健;楊維中;李曉松;;小波神經(jīng)網(wǎng)絡(luò)在梅毒發(fā)病率預(yù)測(cè)中的應(yīng)用初探[J];四川大學(xué)學(xué)報(bào)(醫(yī)學(xué)版);2011年04期
5 江鴻;梅文華;崔俊宇;夏蘇建;李杰;方小衡;許燕;;應(yīng)用灰色系統(tǒng)GM(1,1)模型預(yù)測(cè)廣東省梅毒發(fā)病率[J];中國(guó)艾滋病性病;2012年10期
6 彭?xiàng)?楊宏;;對(duì)新生兒先天性梅毒進(jìn)行產(chǎn)前與產(chǎn)后干預(yù)效果的分析[J];中國(guó)性科學(xué);2013年07期
7 梁祁;胡建利;吳瑩;張永杰;艾靜;劉文東;胡月梅;;應(yīng)用灰色系統(tǒng)GM(1,1)模型預(yù)測(cè)梅毒發(fā)病率[J];江蘇預(yù)防醫(yī)學(xué);2010年06期
8 霍飛;董笑月;盛艷霞;郭燕;;GM(1,1)模型在天津市梅毒發(fā)病率預(yù)測(cè)中的應(yīng)用[J];職業(yè)與健康;2008年13期
9 梁燕鮮;王亞菲;翟林;李小杉;何美琪;莊勛;;江蘇省艾滋病、淋病和梅毒發(fā)病率GM(1,1)灰色模型預(yù)測(cè)研究[J];南通大學(xué)學(xué)報(bào)(醫(yī)學(xué)版);2013年01期
10 陳世平;楊慎華;劉明斌;;南昌市2000-2011年梅毒發(fā)病率GM(1,1)模型預(yù)測(cè)[J];中國(guó)衛(wèi)生統(tǒng)計(jì);2013年04期
,本文編號(hào):2285589
本文鏈接:http://sikaile.net/yixuelunwen/pifb/2285589.html