高脂飲食對不同年齡小鼠胰島素抵抗和胰島β細(xì)胞功能的影響
[Abstract]:OBJECTIVE: With the development of economy in China, great changes have taken place in dietary structure and lifestyle. Obesity and obesity-related metabolic diseases such as glucose metabolism disorders are increasing year by year. The purpose of this study was to investigate the effects of high-fat diet on insulin sensitivity and islet beta cell function in mice of different months of age, and to deepen the effects of age on metabolic stress response in the body. To explore the early markers of islet beta cell decompensation during metabolic stress, and to provide useful clues for further study of the molecular mechanism of islet beta cell failure in the development of metabolic syndrome and diabetes mellitus. Methods: Twenty-four healthy C57BL/6J male mice (average weight 12.66.74 g) were weaned on 21 days, aged 3 months. Twenty-four mice in each age group were randomly divided into two groups: 21 DHF/21 DCD, 3 MHF/3 MCD and 6 MHF/6 MCD. The mice were given 60% high fat diet or normal diet for 12 weeks. The body weight was weighed weekly, fasting blood glucose was measured every three weeks for 6 hours, and glucose tolerance was measured by gavage at 12 weeks. Enzyme linked immunosorbent assay (ELISA) was used to measure fasting serum insulin, pancreas, liver and adipose tissue were taken from mice by neck-cutting method, pancreatic islets were extracted by biliary duct puncture and digestion, and proinsulin was detected by immunoblotting. Results: After 12 weeks of feeding with high-fat diet, the weight of the high-fat diet group was higher than that of the normal diet group. Obvious weight gain (P 0.01) (21DHF 46.18+3.34 g vs. 21DCD 28.51+1.66 g; 3MHF 51.51+2.2 g vs. 3MCD 32.99+1.26 g; 6MHF 46.06+8.07 g vs. 6MCD 36.87+4.67 g). The weight gain of 21DHF mice was the greatest, but the weight gain due to high-fat diet was the greatest at 3MHF. (2) The fasting blood glucose of the high-fat group at 6 hours was higher than that of the control group (21DHF 9.68+4.67 g). 82 vs. 21 DCD 6.60.86 mmol/L; 3MHF 12.86.34 vs. 3 MCD 6.30.42 mmol/L; 6MHF 9.68 1.32 vs. 6 MCD 5.40.97 mmol/L, the differences were statistically significant (P 0.05), 3MHF had the highest fasting blood glucose and the highest fasting blood glucose elevation rate, and 3MHF had the earliest glucose tolerance curve compared with 3MCD. Compared with the normal diet group, the area under the diet was increased in different degrees (21 DHF 32.18+10.45 vs.21 DCD 20.91+1.05; 3 MHF 39.33+3.72 vs.3 MCD 16.74+1.70; 6 MHF 30.19+4.61 vs.6 MCD 17.69+2.26), but there was no significant difference in 21-month-old group (P 0.05), the other age groups (P 0.05), and the glucose tolerance of 3 MHF group was the worst. Resistance to vegetarian: The fasting serum insulin level of the high-fat diet group was significantly higher than that of the normal diet group (P 0.05). Compared with the normal diet group, HOMA-IR was significantly higher and ISI was significantly lower in the high-fat diet group (P 0.05). Insulin resistance was the most obvious in the 3MHF group, and insulin resistance was the most obvious in the 3MHF group. (5) The percentage of proinsulin to total insulin (proinsulin PI + insulin I) [PI / (PI + I) x 100%]: 21DHF 51.53 (+ 4.18%) vs. 21DCD28.20 (+ 6.20%), P 0.01; 3MHF 69.84 (+ 1.55%) vs. 3MCD 30.76 (+ 0.18%), P 0.01; 6MHF 46.65 (+ 2.49%) vs. 6MCD 39.64 (+ 1.28%), P 0.01.3MHF vs. 21DHF, 6MHF, 6 MCD 30.76 (+ 0.18%). (P 0.05). (6) Histological changes: The average islet area of mice fed with high-fat diet at different ages was higher than those fed with normal diet (21DHF 14040 (+ 22274) Um2 vs. 21DCD 11061 (+ 7004) um2, P = 0.62; 3MHF 22759 (+ 36270) Um2 vs. 3MCD 11191 (+ 12509) um2, P = 0.02; 6MHF 22072 (+ 30223) Um2 vs. 6MCD 11424 (+) 174252, P = 0.02); and the same age group fed with high-fat diet was higher than that of mice fed with high- The proportion of beta cells to islet area in the diet group was higher than that in the normal diet group (21DHF 91.40+6.41% vs. 21DCD 85.41+9.47%, P 0.001; 3MHF 94.68+9.06% vs. 3MCD 85.83+9.55%, P 0.001; 6MHF 88.87+7.72% vs. 6MCD 83.08+14.99%, P = 0.04); the ratio of alpha cells to beta cells in the high-fat diet group was lower than that in the normal diet group at the same age (P = 0.04). (21DHF 0.21 + 0.16 vs. 21DCD 0.30 + 0.16, P 0.05; 3MHF 0.18 + 0.07 vs. 3 MCD 0.28 + 0.16 P 0.05; 6MHF 0.22 + 0.09 vs. 6 MCD 0.27 + 0.13 P = 0.09); the mean cross-sectional area of beta cells was not significantly different between the high-fat group and the normal diet group; as long as the compensatory proliferation of islets was caused by the compensatory proliferation of beta cells, the compensatory proliferation of beta cells in 3MHF group was not found. There were different degrees of telangiectasia and large amount of blood cells accumulated in the islets. Fatty liver appeared in the liver of high-fat group, 21DHF fatty liver grade 2; 3MHF fatty liver grade 3; 6MHF fatty liver grade 3; inflammatory cells infiltrated in the peritesticular adipose tissue of each high-fat group. C57BL/6J male mice fed with 0% high-fat diet for 12 weeks could successfully induce obesity, insulin resistance and abnormal glucose metabolism. (2) Compared with 21-day-old and 6-month-old mice, 3-month-old mice fed with high-fat diet had the fastest weight gain, the highest fasting blood glucose, the worst glucose tolerance and the most serious insulin resistance. Metabolic model must consider the biological age of experimental animals, this experiment provides a reference for the selection of other basic research experimental animals. (3) Insulin resistance, impaired fasting blood glucose, impaired glucose tolerance and proinsulin in islets of all ages after high-fat diet feeding mice are obvious. Many, islet compensatory enlargement (mainly beta-cell compensatory hyperplasia), but islet compensatory hyperplasia can not compensate for glucose metabolism load, indicating that high-fat diet affects beta-cell function. (4) This study shows that age plays an important role in metabolic stress response. (5) The increase of proinsulin induced by high fat diet may be an early marker of beta cell decompensation.
【學(xué)位授予單位】:天津醫(yī)科大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:R587.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張建功,程樺;胰島β細(xì)胞功能測定方法及在不同人群中的應(yīng)用[J];遼寧實用糖尿病雜志;2000年03期
2 肖常青,鄧宏明,龐翠軍,李世生,夏寧,于志清;不同方法評價胰島β細(xì)胞功能的結(jié)果分析[J];中華內(nèi)分泌代謝雜志;2001年01期
3 郭妮;胰島β細(xì)胞功能檢測方法及評估[J];廣西醫(yī)學(xué);2001年02期
4 楊素蘭,馬洪波;初診2型糖尿病患者胰島β細(xì)胞功能觀察[J];醫(yī)師進(jìn)修雜志;2003年21期
5 項坤三;胰島β細(xì)胞功能研究:中國的信息——國際胰島素分泌研究組織中國組第一次學(xué)術(shù)會議簡報[J];中華內(nèi)分泌代謝雜志;2003年04期
6 董凌燕;胰島β細(xì)胞功能的調(diào)節(jié)[J];國外醫(yī)學(xué)(內(nèi)分泌學(xué)分冊);2003年S1期
7 李強(qiáng),張巾超;臨床實用胰島β細(xì)胞功能評估方法的應(yīng)用及再認(rèn)識[J];遼寧實用糖尿病雜志;2003年04期
8 馬曉靜,吳松華;精氨酸與胰島β細(xì)胞功能[J];中國糖尿病雜志;2003年06期
9 賈偉平,項坤三;胰島β細(xì)胞功能評估——從基礎(chǔ)到臨床[J];中華內(nèi)分泌代謝雜志;2005年03期
10 賈偉平,項坤三,包玉倩,朱敏,于浩泳,吳松華,馬曉靜;從基礎(chǔ)到臨床對胰島β細(xì)胞功能的評估[J];中華內(nèi)分泌代謝雜志;2005年04期
相關(guān)會議論文 前10條
1 徐敏;劉宇;王天歌;李勉;徐佰慧;黃飛;楊枝;張婕;陳宇紅;畢宇芳;寧光;;飲酒在吸煙與胰島β細(xì)胞功能下降關(guān)系中的作用[A];中華醫(yī)學(xué)會第十次全國內(nèi)分泌學(xué)學(xué)術(shù)會議論文匯編[C];2011年
2 李妍妍;田慧;;老年人群胰島β細(xì)胞功能的評估[A];2006年中華醫(yī)學(xué)會糖尿病分會第十次全國糖尿病學(xué)術(shù)會議論文集[C];2006年
3 劉瑜;谷昭艷;李春霖;苗新宇;李劍;;自噬功能在衰老相關(guān)的胰島β細(xì)胞功能下降中的作用[A];中華醫(yī)學(xué)會第十一次全國內(nèi)分泌學(xué)學(xué)術(shù)會議論文匯編[C];2012年
4 朱立群;魏華;劉英華;余曉琳;;中西藥結(jié)合改善成人緩慢進(jìn)展型自身免疫性糖尿病胰島β細(xì)胞功能的研究[A];第七次全國中醫(yī)糖尿病學(xué)術(shù)大會論文匯編[C];2003年
5 張四青;李芳萍;嚴(yán)勵;李炎;王斐;黃銀瓊;;新診斷2型糖尿病伴非酒精性脂肪肝病患者胰島β細(xì)胞功能的臨床研究[A];2008內(nèi)分泌代謝性疾病系列研討會暨中青年英文論壇論文匯編[C];2008年
6 谷昭艷;李春霖;杜英臻;劉瑜;馬麗超;龔燕平;田慧;;衰老對胰島β細(xì)胞功能的影響及分子機(jī)制研究[A];2008內(nèi)分泌代謝性疾病系列研討會暨中青年英文論壇論文匯編[C];2008年
7 肖正大;郭晶晶;周錦慧;薛霞;;2型糖尿病患者25羥維生素D3與胰島β細(xì)胞功能的關(guān)系探討[A];中華醫(yī)學(xué)會第十次全國內(nèi)分泌學(xué)學(xué)術(shù)會議論文匯編[C];2011年
8 方芳;葉山東;;糖化血紅蛋白A1C與初診2型糖尿病患者胰島β細(xì)胞功能關(guān)系[A];中華醫(yī)學(xué)會第十一次全國內(nèi)分泌學(xué)學(xué)術(shù)會議論文匯編[C];2012年
9 劉娟;李延兵;邵虹;李月霞;袁永紅;肖亦斌;翁建平;;不同糖耐量個體胰島β細(xì)胞功能觀察及評價[A];2006年中華醫(yī)學(xué)會糖尿病分會第十次全國糖尿病學(xué)術(shù)會議論文集[C];2006年
10 李新萍;曾正陪;宋愛羚;盧琳;童安莉;陳適;張妲;王永慧;付春莉;李明;;特發(fā)性醛固酮增多癥患者服用螺內(nèi)酯后胰島β細(xì)胞功能的變化[A];中華醫(yī)學(xué)會第十次全國內(nèi)分泌學(xué)學(xué)術(shù)會議論文匯編[C];2011年
相關(guān)重要報紙文章 前10條
1 李光偉;胰島β細(xì)胞功能評估九法[N];中國中醫(yī)藥報;2004年
2 羅照春;高脂飲食不僅傷“心”還會傷“腎”[N];大眾衛(wèi)生報;2000年
3 羅照春;高脂飲食可導(dǎo)致腎損害[N];中國醫(yī)藥報;2000年
4 黃東臨;吸入型胰島素市場狼煙四起[N];醫(yī)藥經(jīng)濟(jì)報;2005年
5 朱立群;劉英華;黃曼;中西醫(yī)結(jié)合治療LADA療效切實[N];中國醫(yī)藥報;2005年
6 青云;一餐高脂飲食足矣[N];醫(yī)藥經(jīng)濟(jì)報;2002年
7 吳明;湖北一項研究指出:高脂飲食可導(dǎo)致腎損害[N];大眾衛(wèi)生報;2000年
8 ;胰島素小常識[N];保健時報;2004年
9 ;胰島素抵抗,怎么辦?[N];解放日報;2004年
10 中南大學(xué)湘雅二醫(yī)院老年病科副教授 陳化;什么是“胰島素抵抗”[N];健康報;2001年
相關(guān)博士學(xué)位論文 前10條
1 李新;阻斷腎素血管緊張素系統(tǒng)對胰島β細(xì)胞功能的效應(yīng)及機(jī)制研究[D];華中科技大學(xué);2009年
2 楊琳;成人隱匿性自身免疫糖尿病的診斷和胰島β細(xì)胞功能的研究[D];中南大學(xué);2003年
3 許華;IGF-1相關(guān)通路在高脂飲食對前列腺癌發(fā)生及進(jìn)展影響中的作用[D];復(fù)旦大學(xué);2014年
4 何叢;幽門螺桿菌感染對代謝綜合征的影響及其與腸道菌群的相關(guān)性研究[D];南昌大學(xué);2016年
5 李曉瑾;LRP16基因?qū)σ葝uβ細(xì)胞功能的影響及其機(jī)制的研究[D];中國人民解放軍軍醫(yī)進(jìn)修學(xué)院;2012年
6 張霞;肝病時胰島β細(xì)胞功能的基礎(chǔ)與臨床分析[D];重慶醫(yī)科大學(xué);2002年
7 馮凡;枯草芽孢桿菌表面展示人胰島素原及其口服降血糖功效評估[D];江蘇大學(xué);2015年
8 孫楠;突變型(前)胰島素原在β細(xì)胞功能衰竭中的作用[D];天津醫(yī)科大學(xué);2011年
9 王潔;羧肽酶E基因多態(tài)性、胰島素原水平與冠狀動脈狹窄程度關(guān)系的流行病學(xué)研究[D];南京醫(yī)科大學(xué);2008年
10 王瑜;突變型(前)胰島素原對β細(xì)胞功能的影響[D];天津醫(yī)科大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 謝濤濤;高脂飲食對不同年齡小鼠胰島素抵抗和胰島β細(xì)胞功能的影響[D];天津醫(yī)科大學(xué);2017年
2 黃帥;新診斷2型糖尿病患者胰島β細(xì)胞功能相關(guān)因素分析[D];安徽醫(yī)科大學(xué);2015年
3 楊梅麗;血清Irisin水平與肥胖和2型糖尿病關(guān)系的臨床研究[D];蘇州大學(xué);2015年
4 林海洋;2型糖尿病患者胰島β細(xì)胞功能狀態(tài)與心功能的相關(guān)性探討[D];浙江大學(xué);2015年
5 袁欣欣;FK506對大鼠胰島β細(xì)胞功能的影響[D];南昌大學(xué)醫(yī)學(xué)院;2015年
6 劉芳;2型糖尿病血清分泌型卷曲相關(guān)蛋白4水平及其與胰島β細(xì)胞功能的關(guān)系探討[D];重慶醫(yī)科大學(xué);2015年
7 付思思;家族史對MHO人群的胰島素敏感性及胰島β細(xì)胞功能影響的研究[D];重慶醫(yī)科大學(xué);2015年
8 李翠柳;糖化血紅蛋白、空腹血糖及餐后2h血糖與胰島β細(xì)胞功能關(guān)系的研究[D];南京大學(xué);2014年
9 周娟;青海地區(qū)藏、漢族初發(fā)T2DM患者鐵代謝與胰島β細(xì)胞功能的相關(guān)研究[D];青海大學(xué);2016年
10 孫遜;2型糖尿病胰島β細(xì)胞功能及胰島素抵抗與微量白蛋白尿的相關(guān)性研究[D];青島大學(xué);2015年
,本文編號:2245268
本文鏈接:http://sikaile.net/yixuelunwen/nfm/2245268.html