利用群體CT計(jì)劃圖像的多任務(wù)前列腺自動(dòng)分割
發(fā)布時(shí)間:2018-04-20 05:23
本文選題:前列腺分割 + CT計(jì)劃圖像 ; 參考:《應(yīng)用科學(xué)學(xué)報(bào)》2017年01期
【摘要】:為了實(shí)現(xiàn)CT計(jì)劃圖像中前列腺的自動(dòng)分割,提出一種基于群體CT計(jì)劃圖像的多任務(wù)前列腺分割方法.將群體CT計(jì)劃圖像分別映射到不同參考圖像空間,形成多個(gè)訓(xùn)練任務(wù).利用隨機(jī)森林算法和自動(dòng)上下文模型訓(xùn)練出一系列隨機(jī)森林分類器,將分類器作用在待分割CT計(jì)劃圖像上獲得多個(gè)分類概率圖,最后使用多數(shù)投票法求得最終分割結(jié)果.實(shí)驗(yàn)表明,與單任務(wù)分割方法相比,基于群體CT圖像的多任務(wù)分割能有效提高CT計(jì)劃圖像中前列腺的分割準(zhǔn)確率.
[Abstract]:In order to realize automatic prostate segmentation in CT planning image, a multitask prostate segmentation method based on colony CT planning image is proposed. The group CT planning images are mapped to different reference image spaces to form multiple training tasks. A series of random forest classifiers are trained by using the stochastic forest algorithm and the automatic context model. The classifier is used to obtain multiple classification probability maps on the CT planned images to be segmented. Finally, the final segmentation results are obtained by majority voting method. Experimental results show that multitask segmentation based on colony CT image can effectively improve the accuracy of prostate segmentation in planned CT images compared with single-task segmentation method.
【作者單位】: 南京郵電大學(xué)地理與生物信息學(xué)院;南京郵電大學(xué)通信與信息工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(No.31671006)資助
【分類號(hào)】:R737.25;TP391.41
,
本文編號(hào):1776436
本文鏈接:http://sikaile.net/yixuelunwen/mjlw/1776436.html
最近更新
教材專著