肺結(jié)節(jié)或腫塊320排動態(tài)容積CT雙入口灌注成像與病理的對照
[Abstract]:Objective: to investigate the relationship between perfusion imaging and pathological basis of 320 row dynamic volume CT perfusion imaging in pulmonary nodule or mass lesions, and to study the perfusion characteristics and hemodynamics of lung lesions of different histological types. Methods: from August 2016 to February 2017, 50 patients with intrapulmonary nodule or mass lesions, including 12 adenocarcinoma and 8 squamous cell carcinoma of the lung, were examined by biopsy and biopsy, including 12 cases of lung adenocarcinoma and 8 cases of squamous cell carcinoma of the lung, which were confirmed by surgical resection (41 cases) and biopsy (9 cases), including lung adenocarcinoma (12 cases) and squamous cell carcinoma (8 cases). There were 6 cases of small cell lung cancer, 9 cases of acute inflammation, 7 cases of chronic inflammation and 8 cases of pulmonary tuberculosis. All patients underwent 320 row dynamic volume CT perfusion scan, and the results of perfusion parameters were compared with pathological results. Results: there were significant differences in (BAF), perfusion index (PI) between benign and malignant pulmonary nodules or masses (P0.05). There was no significant difference in (PAF) value of pulmonary artery blood flow between benign and malignant nodules or masses (P0.05). The optimal threshold value of). PI for differentiating benign and malignant tumors was 57.65, the sensitivity was 90.0 and the specificity was 66.7%. The positive predictive value was 87.5 and the negative predictive value was 85.5. The perfusion results of pulmonary nodules or masses were related to their pathological types. Conclusion: the perfusion results of pulmonary nodules or masses are closely related to the pathological types. The main malignant lesions are bronchial artery blood supply. Pulmonary artery blood supply is the main benign lesion. 320 row dynamic volume CT pulmonary perfusion imaging plays an important role in differentiating benign and malignant pulmonary lesions.
【作者單位】: 廣東醫(yī)科大學(xué)附屬醫(yī)院放射科;
【基金】:湛江市非資助科技攻關(guān)計(jì)劃項(xiàng)目(2015B01071)
【分類號】:R563;R816.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 苗芬;吳龍海;周荷琴;;一種基于相關(guān)矩陣的肺結(jié)節(jié)增強(qiáng)算法[J];北京生物醫(yī)學(xué)工程;2008年05期
2 閆海躍;;多層螺旋高分辨率CT對良性肺結(jié)節(jié)的診斷價值[J];中國實(shí)用醫(yī)藥;2011年15期
3 陸長城;李圣磊;;矽肺結(jié)節(jié)的高分辨率表現(xiàn)及鑒別診斷[J];中國社區(qū)醫(yī)師(醫(yī)學(xué)專業(yè));2012年11期
4 高軍,李基根,周全;不典型肺結(jié)節(jié)的螺旋CT與臨床病理診斷的對比分析[J];中國醫(yī)學(xué)影像學(xué)雜志;2005年05期
5 高江峰;王文秀;紀(jì)俊雨;催春yN;李云霄;王新舉;馮光;;孤立性外周肺結(jié)節(jié)的影像學(xué)診斷分析[J];河北醫(yī)藥;2009年17期
6 徐才國;張杰華;柯孔良;尹雪君;朱衛(wèi)峰;牛富業(yè);;CT引導(dǎo)下經(jīng)皮胸膜或肺結(jié)節(jié)穿刺的臨床應(yīng)用[J];中國醫(yī)學(xué)影像技術(shù);2009年S1期
7 趙培民;;矽肺結(jié)節(jié)的CT診斷與鑒別診斷[J];現(xiàn)代醫(yī)用影像學(xué);2008年04期
8 朱昭環(huán);耿敬標(biāo);周軻;胡東;李文進(jìn);;數(shù)字化斷層融合技術(shù)在肺結(jié)節(jié)檢查中的應(yīng)用價值[J];重慶醫(yī)學(xué);2014年05期
9 楊順娥;徐繼鴻;張瑾;穆尼拉;;經(jīng)纖維支氣管鏡肺活檢診斷肺周圍性病變[J];新疆醫(yī)學(xué);2002年05期
10 王凱;張煜;劉哲星;林炳權(quán);吳志強(qiáng);曹蕾;;基于自適應(yīng)體窗結(jié)構(gòu)分析的肺結(jié)節(jié)檢測方法[J];南方醫(yī)科大學(xué)學(xué)報(bào);2014年06期
相關(guān)會議論文 前2條
1 查開繼;高劍波;張永高;郭華;楊學(xué)華;周志剛;;斷層融合成像與數(shù)字X線成像診斷肺結(jié)節(jié)的比較研究[A];2010中華醫(yī)學(xué)會影像技術(shù)分會第十八次全國學(xué)術(shù)大會論文集[C];2010年
2 胡紅杰;;非實(shí)性肺結(jié)節(jié)診斷和處理指南[A];2013年浙江省放射學(xué)學(xué)術(shù)年會論文集[C];2013年
相關(guān)碩士學(xué)位論文 前4條
1 滕雅琴;計(jì)算機(jī)輔助檢測系統(tǒng)CT肺結(jié)節(jié)檢出方式的研究[D];新疆醫(yī)科大學(xué);2016年
2 王獻(xiàn)東;基于群體智能的真假肺結(jié)節(jié)分類算法研究與實(shí)現(xiàn)[D];東北大學(xué);2012年
3 王林帥;低劑量CT掃描檢測肺結(jié)節(jié)的實(shí)驗(yàn)研究[D];青島大學(xué);2014年
4 孫海寧;肺結(jié)節(jié)MDCT容積定量影響因素與容積閾值分割法診斷效能的研究[D];天津醫(yī)科大學(xué);2010年
,本文編號:2344787
本文鏈接:http://sikaile.net/yixuelunwen/huxijib/2344787.html